
CD Dissertation

Schanuel’s Conjecture and
Exponential Fields

by Lothar Sebastian Krapp





Schanuel’s Conjecture
and Exponential Fields

Lothar Q. J. Sebastian Krapp
Mansfield College
University of Oxford

Supervised by
Professor Jonathan Pila
Mathematical Institute
University of Oxford

Date of submission: 19 March 2015

Oxford, United Kingdom, 2015



Contents

Contents

1 Introduction 1

2 Schanuel’s Conjecture 2
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Equivalent statements . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Exponential fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Overview of applications . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Survey of applications 7
3.1 Shapiro’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Generic solutions of polynomial exponential equations . . . . . . . . 25

4 Zilber’s pseudo-exponential fields 36
4.1 Infinitary Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Summary of axioms and properties . . . . . . . . . . . . . . . . . . . 37

5 Conclusion 42
5.1 Summary of recent results on Schanuel’s Conjecture . . . . . . . . . 42
5.2 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References 45

i



1 Introduction

1 Introduction

In recent years, Schanuel’s Conjecture has played an important role in Transcen-
dental Number Theory (e. g. Waldschmidt [31]) as well as decidability problems in
Model Theory (e. g. Macintyre and Wilkie [18]). The connection between these two
areas was made by Boris Zilber in [36].

This dissertation will firstly give an introduction to exponential fields, in partic-
ular to the complex exponential field Cexp, and secondly exhibit various applications
of Schanuel’s Conjecture in this context. Although Schanuel’s Conjecture has been
influencial in a wide range of mathematical areas, this survey will mainly focus on
conclusions in exponential fields. Amongst others, papers by D’Aquino, Macintyre
and Terzo [6], Marker [21] and Mantova [19] deal with such applications. The main
objective will be to highlight and compare the role Schanuel’s Conjecture plays in
the proofs of their results. Lastly, we will summarise the idea behind Zilber’s con-
struction of fields imitating the complex exponential field and state a few recent
results as well as open questions.

In the first chapter, we will briefly summarise basic results of Field Theory to
clarify the notion of the transcendence degree of a field extension. This allows us to
state Schanuel’s Conjecture, of which we will present the two equivalent versions we
will refer to in this paper. We will also introduce exponential fields axiomatically
and give an overview of the two applications of Schanuel’s Conjecture in the com-
plex exponential field which we will present in more detail in the second chapter.
The first application is the proof of Shapiro’s Conjecture on exponential polynomials
with infinitely many common zeros. This will be done in a more general setting than
the complex exponential field. The second application is the proof of the existence
of infinitely many algebraically independent zeros of polynomial exponential equa-
tions. Throughout the paper we will carefully indicate when a result is based on the
assumption of Schanuel’s Conjecture and when it can be proved unconditionally.

Zilber’s model theoretic approach by constructing fields satisfying Schanuel’s
Conjecture will be explained in the third chapter. We will firstly explain the basic
notions of Infinitary Logic and secondly summarise the properties of Zilber’s fields
and how these are related to the applications of Schanuel’s Conjecture.

The final chapter will give a few more examples of recent results related to
Schanuel’s Conjecture and state some open questions.
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2 Schanuel’s Conjecture

2 Schanuel’s Conjecture

This chapter shall present an introduction to the matter of this dissertation, namely
Schanuel’s Conjecture itself. Although the mathematical language necessary to state
this conjecture only requires basic results of field theory, it is important to make a
few notions precise.

2.1 Background

The transcendence degree of a field extension L/K, which we will introduce in this
section, is a measure of the “size” of the extension. In the case of finitely generated
extensions, it indicates the minimal number of elements in L transcendental over
K which must be adjoint to K in order to produce L. We will state two theorems,
which can be found in basic field theory textbooks such as Howie [10] Theorem10.6
and 10.7, to establish that the transcendence degree is well-defined.

Definition 2.1. LetK be a field of characteristic 0, and let L/K be a field extension.
A subset {α1, . . . , αn} of L is called algebraically independent (over K) if for all
polynomials p(X1, . . . , Xn) ∈ K[X1, . . . , Xn],

p(α1, . . . , αn) = 0 implies p(X1, . . . , Xn) = 0.

Theorem 2.2. Let L/K be a finitely generated field extension such that L =
K(α1, . . . , αn). Then there exists an intermediate field extension E, that is, L/E/K,
such that for some m such that 0 ≤ m ≤ n we have

(i) E = K(β1, . . . , βm) for some set {β1, . . . , βm} ⊆ L which is algebraically inde-
pendent over K, and

(ii) the degree [L : E] of the field extension L/E is finite.

Theorem 2.3. Using the same notation and conditions as in Theorem2.2, suppose
that there is another intermediate field extension L/F/K, such that

(i) F = K(γ1, . . . , γp) for some set {γ1, . . . , γp} ⊆ L which is algebraically inde-
pendent over K, and

(ii) [L : F ] is finite.

Then p = m.

The number m is called the transcendence degree of L over K and denoted by
td(L/K) or tdK(L). For ease of notation, we also write tdK(α1, . . . , αn) for the
transcendence degree of K(α1, . . . , αn) over K and call it the transcendence degree
of α1, . . . , αn over K.
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2 Schanuel’s Conjecture

Remark 2.4. Theorem2.3 can be proved similarly to the Steinitz exchange lemma
for bases of finite-dimensional vector spaces, showing that a maximal linearly inde-
pendent set of a finite-dimensional vector space forms a basis. By analogy, we can
call B a transcendence basis of L/K if it is algebraically independent and maximal
with that property. The transcendence degree of L/K is then equal to the cardi-
nality of such a transcendence basis. Note that in this way we can also define the
transcendence degree of a general (not necessarily finitely generated) field extension
L/K as the largest cardinality of an algebraically independent subset of L over K.

2.2 Equivalent statements

The language we have established in the previous section is sufficient to state the
equivalent versions of Schanuel’s Conjecture, whose applications we will consider in
the following chapters.

Schanuel’s Conjecture was first mentioned in the literature by Stephen Schanuel’s
doctoral supervisor Serge Lang in [15], p. 30 f. It is stated as follows:

“[. . . ] if α1, . . . , αm are complex numbers, linearly independent over Q, then the
transcendence degree of

α1, . . . , αm, eα1 , . . . , eαm

is at least m.”

Lang also remarks the significance of this conjecture, as the algebraic independence
of e and π could be proved by considering the complex numbers

1, 2πi, e and e2πi,

having transcendence degree of at least 2.

In our terminology, this first statement reads as:

Version 1. Let a1, . . . , an be Q-linearly independent complex numbers. Then

tdQ(a1, . . . , an, exp(a1), . . . , exp(an)) ≥ n.

For ease of notation, we will from now on also write tuples (a1, . . . , an) as a and
(exp(a1), . . . , exp(an)) as exp(a).

Consider a Q-linear combination an+1 = λ1a1 + . . .+λnan. Let M be a non-zero
integer such that Mλk is an integer for all k, and assume, without loss of generality,
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2 Schanuel’s Conjecture

that Mλ1, . . . ,Mλs are non-negative and Mλs+1, . . . ,Mλn are negative for some
0 ≤ s ≤ n. Then for the polynomial

p(Y1, . . . , Yn+1) =
s∏

k=1
YMλk
k − YM

n+1

n∏
k=s+1

Y −Mλk
k

we obtain
p(exp(a1), . . . , exp(an+1)) = 0.

Therefore, both (a1, . . . , an+1) and (exp(a1), . . . , exp(an+1)) are algebraically de-
pendent. Hence, adding a linear combination of a to the tuple does not change the
transcendence degree of (a, exp(a)).

This gives rise to the following equivalent version of Schanuel’s Conjecture, which
we will also use and refer to:

Version 2. Let a1, . . . , an be complex numbers. Then

tdQ(a, exp(a)) ≥ ldimQ(a),

where ldimQ(a) denotes the linear dimension of the vector space over Q spanned by
a1, . . . , an.

By defining the predimension δ of a tuple of complex numbers a as

δ(a) := tdQ(a, exp(a))− ldimQ(a),

this version can be restated as simply

δ(a) ≥ 0.

For an overview of further variants of Schanuel’s Conjecture and the (known)
dependencies between them, see Kirby [12].

2.3 Exponential fields

Although we will mainly concentrate on applications of Schanuel’s Conjecture in
the complex exponential field Cexp, we also introduce a more general notion of
exponential fields. This can be done in a model theoretic way (see e. g. Wolter [33]),
which might be of interest for later parts of this work, but initially an axiomatic
introduction will be sufficient for our purposes.

Definition 2.5. An exponential field is a field (K,+, ·, 0, 1) equipped with a unary
function

exp : K → K,

satisfying the following two axioms:
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2 Schanuel’s Conjecture

(E1)
∀x, y ∈ K : exp(x+ y) = exp(x) · exp(y),

(E2)
exp(0) = 1.

exp is said to be an exponential function on K.1

When we take C as our field and equip it with the usual exponential function
exp : z 7→ ez, we obtain the complex exponential field

Cexp = (C,+, ·, 0, 1, exp).

Similarly, the real exponential field is defined as

Rexp = (R,+, ·, 0, 1, exp),

with standard exponentiation x 7→ ex on the real numbers.
Later we will also write ex instead of exp(x) in general exponential fields, and e

then stands for the element exp(1) in K.

2.4 Overview of applications

This section will give a brief overview of the applications of Schanuel’s Conjecture
which we will consider in detail in the next chapter.

Harold S. Shapiro stated in [24], p. 18, the following conjecture on exponential
polynomials:

If two exponential polynomials have infinitely many zeroes in common, they are
both multiples of some third (entire transcendental) exponential polynomial.

D’Aquino, Macintyre and Terzo prove Shapiro’s Conjecture assuming Schanuel’s
Conjecture in [6]. We will restate Shapiro’s Conjecture in a more symbolic lan-
guage.

Definition 2.6. A function f over C of the form

f(z) = λ1eµ1z + . . .+ λneµnz,

where λ1, . . . , λn and µ1, . . . , µn are complex coefficients, is called an exponential
polynomial. The set of such functions forms a ring under the usual addition and
multiplication, which we will denote by E .

1Some authors include exp(1) 6= 1 as an axiom to disallow the trivial constant exponential
function.
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2 Schanuel’s Conjecture

This definition of exponential polynomials differs from Shapiro’s (see [24] p. 1),
which allows complex polynomials in place of constant coefficients λ1, . . . , λn. We
will therefore only consider a special case of Shapiro’s Conjecture.

The notions of multiples and divisibility of exponential polynomials will be in-
terpreted in the setting of the ring E .

Remark 2.7. Every exponential polynomial is an entire function, that is, a complex-
valued function which is holomorphic over the whole complex plane. Moreover,
every non-constant exponential polynomial is transcendental, i. e. not a complex
polynomial. This explains why Shapiro mentions these two properties in his original
statement.

Shapiro’s Conjecture (see [6] p. 597). If f and g are two exponential polynomials
in E with infinitely many common zeros, then there exists an exponential polynomial
h in E such that h is a common divisor of f and g in the ring E, and h has infinitely
many zeros in C.

In fact, we will even consider Shapiro’s Conjecture for a more general class of
exponential fields which also contains Cexp.

The second result we focus on is the following statement proved by David Marker
(see [21] Theorem1.6):

Theorem 2.8 (SC2). Suppose that p(X,Y ) ∈ Q[X,Y ] is irreducible and depends
on both X and Y . Then there are infinitely many algebraically independent zeros of
f(z) = p(z, ez).

Marker actually states the theorem only for p(X,Y ) ∈ Q[X,Y ] but proves it
more generally for polynomials in the algebraic closure of Q.

In [19] Vincenzo Mantova modifies this result and proves a more general state-
ment.

Definition 2.9. Let k ⊂ C be a finitely generated field and p(X,Y ) ∈ k[X,Y ]. A
solution v of p(z, ez) = 0 such that

tdk(v, ev) = 1

is called generic over k.

Theorem 2.10 (SC). (See [19] Theorem1.2).
For any finitely generated field k ⊂ C, and for any irreducible polynomial p(X,Y ) ∈

2This means that for the proof of this statement we assume Schanuel’s Conjecture.
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3 Survey of applications

k[X,Y ] depending on both X and Y , the equation

p(z, ez) = 0

has a solution generic over k.

Both Marker and Mantova refer to the simplest case of the strong exponential-
algebraic closure property of Cexp conjectured by Zilber in [36]. Since Zilber’s paper
is of great importance in the context of recent results on Schanuel’s Conjecture, we
will describe and focus on his work in Chapter 4.

3 Survey of applications

In the following two sections, we will describe the proofs of the theorems stated
in Section 2.4. Since this is a survey on the role Schanuel’s Conjecture plays in
those proofs, we will mainly focus on the arguments based on the assumption that
Schanuel’s Conjecture holds. The papers [21] and [19] which we consider work
in the setting of the complex exponential field Cexp, whereas [6] proves Shapiro’s
Conjecture for slightly more general exponential fields. We will state all results in
as general form as possible, particularly indicating where additional assumptions
must be made, e. g. some results only hold in Cexp.

3.1 Shapiro’s Conjecture

In this section we will establish how Schanuel’s Conjecture implies Schapiro’s Con-
jecture, following the work of D’Aquino, Macintyre and Terzo [6].

Recall the statement of Shapiro’s Conjecture:
If f and g are two exponential polynomials in E with infinitely many common zeros,
then there exists an exponential polynomial h in E such that h is a common divisor
of f and g in the ring E, and h has infinitely many zeros in C.

We will consider two cases with distinct conditions on the reducibility of f and
g. In both cases we can prove Shapiro’s Conjecture in a more general setting with
connections to Zilber’s exponential field, which will be explained in Section 4.2. No
arguments in the first case require Schanuel’s Conjecture. In the second case the
assumption of Schanuel’s Conjecture, whose statement can easily be extended for
this more general setting of exponential fields, is used. We will introduce some ter-
minology and state the two different cases of Shapiro’s Conjecture as theorems.

In this section, K will denote any exponential field with exponentiation exp(z) =
ez and the following properties:

7



3 Survey of applications

1. K has characteristic 0;

2. K is algebraically closed;

3. exp is surjective onto K×, the multiplicative group of K;

4. ker(exp) = {z ∈ K | exp(z) = 1} is an infinite cyclic group.

In Section 4.2, an exponential field satisfying the first three properties is called an
ELA-field.

For the following definitions of constants we do not need the property that exp
is surjective onto K×.

Kirby, Macintyre and Onshuus show in [14] that the set of the two possible
generators of ker(exp) is first-order definable. Denote this set by {α0,−α0}. Fix a
root of the polynomial X2− 1 in K[X] and denote it by i. The two possible choices
of i only differ by their sign and do not affect the properties of the following notions.
We further define the sine function as

sin(z) := eiz − e−iz

2i .

Since eα0 = e−α0 = 1, we can choose

π ∈
{
α0
2i ,
−α0
2i

}
such that

sin
(
π

2

)
= 1.

These definitions result in constants π and i and a sine function sin in analogy to
Cexp. Hence, many of their properties are similar to the ones of the corresponding
notions in Cexp and will not be pointed out in particular.

When we talk about an exponential polynomial

f(z) = λ1eµ1z + . . .+ λneµnz,

in this context, we take the coefficients λ1, . . . , λn and µ1, . . . , µn in K. The ring of
such exponential polynomials is also denoted by E . Note that its units are exactly
the elements of the form λeµz for λ 6= 0.

Definition 3.1. Let f(z) = λ1eµ1z + . . . + λneµnz be an exponential polynomial.
We call the vector space over Q generated by µ1, . . . , µn the support of f and denote
it by supp(f).3

3Since K is of characteristic 0, there is a natural copy of Q inside K.
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3 Survey of applications

Definition 3.2. An exponential polynomial f is called simple if dimQ supp(f) = 1.

For instance, sin(z) is simple.

Remark 3.3. Note that dimQ supp(f) = ldimQ(µ). So if f is simple, then there exists
a non-zero κ ∈ K and s1, . . . , sn ∈ Z such that

µj = sjκ

for all j.4 Hence,
f(z) = λ1es1κz + . . .+ λnesnκz = p(eκz)

for some polynomial p(X) ∈ K[X]. Since K is algebraically closed, p(X) factorises
into finitely many linear factors of the form (X − νj) for some νj ∈ K. Thus f(z)
factorises into finitely many factors

(eκz − νj) .

Up to multiplication with a unit in E , we can now express f(z) as a finite product
of factors of the form (

1− νje−κz
)
.

We will quote Ritt’s factorisation theorem to obtain the case distinction we are
aiming for (see [23] p. 585):

Every function
1 + a1eα1x + . . .+ aneαnx,

distinct from unity, can be expressed in one and only one way as a product

(S1S2 . . . Ss)(I1I2 . . . Ii),

in which S1, . . . , Ss are simple functions such that the coefficients of x in any one
of them have irrational ratios to the coefficients of x in any other, and in which
I1, . . . , Ii are irreducible functions.

Ritt makes this statement over the exponential field Cexp, but since he only uses
its properties of being algebraically closed and of characteristic 0, as [6] notes, we
can use this result for our field K (even without the standard period property of
exp). Using the terminology we established earlier and the fact that any function in
E can be transformed into one of the form given in Ritt’s factorisation theorem by
multiplication with a unit in E , this emerges as the following theorem:

4Ritt [23] uses this property to define simple exponential polynomials.
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3 Survey of applications

Theorem 3.4. Let f(z) = λ1eµ1z+. . .+λneµnz ∈ E. Then f can be written uniquely
up to order and multiplication with a unit in E as the product in E

S1 . . . ScI1 . . . Id

where all Sj are simple with supp(Sj) ∩ supp(Sj′) = {0} for j 6= j′ and all Ik are
irreducible.

Suppose that f, g ∈ E have infinitely many common zeros and are both not
simple. Let

f = S1 . . . ScI1 . . . Id

and
g = T1 . . . TuJ1 . . . Jv

be the unique factorisations of f and g into simple Sj and Ti and irreducible Ik and
J`, given in Theorem3.4. A common zero of f and g must be a zero of a factor of
each function. Hence, two factors f̃ and g̃, say, of f and g respectively, have infinitely
many common zeros. If f̃ and g̃ have a common factor h in E with infinitely many
zeros, then h is the common factor of f and g in Shapiro’s Conjecture.

We deduce that in order to prove Shapiro’s Conjecture, it suffices to show the
existence of a common factor h of f and g with infinitely many zeros for the following
two cases:

1. At least one of f and g is simple.

2. Both f and g are irreducible.

Case 1: For this case Shapiro’s Conjecture has been proved for Cexp by van der
Poorten and Tijdeman [30] without the assumption of Schanuel’s Conjecture. We
will present an unconditional proof for general exponential fields as specified before.

Our first lemma is a special case of the Skolem–Mahler–Lech Theorem for arbi-
trary fields of characteristic 0 (Lech [16] p. 417). It is stated by [30], p. 62, for the
complex exponential field. However, the proof also works for general exponential
fields of characteristic 0, as is pointed out in [6].

Lemma 3.5. Let f ∈ E and let A ⊆ Z be the set of integers on which f van-
ishes. Then A is the finite union of arithmetic progressions, that is, sets of the form
{m+ kd | k ∈ Z} for some m, d ∈ Z. Moreover, if A is infinite, then at least one of
these arithmetic progressions has a non-zero difference d.

We need a second lemma using the notions of sin and π we defined earlier.

Lemma 3.6. Let f ∈ E. If f vanishes at all integers, then sin(πz) divides f in the
ring E.

10
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Proof. Let f(z) = λ1eµ1z + . . .+ λneµnz ∈ E , with λ1, . . . , λn 6= 0, and suppose that
f vanishes at all integers. If f is identically 0, then every exponential polynomial
divides f . Otherwise we must have n ≥ 2, as expressions of the form λ1eµ1z only
become 0 if λ1 = 0.

We will proceed by induction on the length n of f .
For n = 2,

f(z) = λ1eµ1z + λ2eµ2z,

with λ1, λ2 6= 0. By setting z = 0, we obtain

λ1 + λ2 = 0

and hence
f(z) = λ1 (eµ1z − eµ2z) .

Since λ1 6= 0, setting z = 1 gives us

eµ1 − eµ2 = 0.

Hence, µ1 and µ2 only differ by an integer multiple of the period of exp, i. e. µ2 =
µ1 + 2kπi for some k ∈ Z, and

f(z) = λ1eµ1z
(
1− e2kπiz

)
.

Without loss of generality, we can assume that k is positive, as otherwise we can
just switch the roles of µ1 and µ2. Recall that

sin(z) := eiz − e−iz

2i .

Hence,
−2ieπiz sin(πz) = 1− e2πiz.

Multiplying this by
1 + e2πiz + e4πiz + . . .+ e2(k−1)πiz

gives us
1− e2kπiz,

whence sin(πz) divides f(z).
Now suppose that for all exponential polynomials h(z) of length n − 1 which

vanish at all integers, sin(πz) divides h(z). By setting z equal to 1, . . . , n in f(z),
we obtain the system of identities

λ1eµ1 + . . .+ λneµn = 0,

λ1(eµ1)2 + . . .+ λn(eµn)2 = 0,

11



3 Survey of applications

...

λ1(eµ1)n + . . .+ λn(eµn)n = 0.

Let δj = eµj for j = 1, . . . , n. In matrix notation this system becomes
δ1 δ2 · · · δn

δ2
1 δ2

2 · · · δ2
n

...
...

...
δn1 δn2 · · · δnn




λ1

λ2
...
λn

 =


0
0
...
0

 .

Since λ1, . . . , λn are all non-zero, they form a non-trivial solution of the correspond-
ing system of linear equations. Hence, the determinant of the matrix must be zero.
By taking out the factor δj from each column, we obtain

δ1δ2 . . . δn

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
δ1 δ2 · · · δn
...

...
...

δn−1
1 δn−1

2 · · · δn−1
n

∣∣∣∣∣∣∣∣∣∣∣
= 0.

This is the Vandermonde determinant, and so

δ1 . . . δn ·
∏

1≤i<j≤n
(δi − δj) = 0.

Since all δj are non-zero, δi = δj for some i < j. Without loss of generality, we can
assume that δ1 = δ2, i. e. eµ1 = eµ2 . Hence, for each k ∈ Z,

(λ1 + λ2)eµ1k +
n∑
j=3

λjeµjk = f(k) + λ2
(
eµ1k − eµ2k

)
= 0.

The polynomial

h(z) = (λ1 + λ2)eµ1z +
n∑
j=3

λjeµjz

has length n − 1 and vanishes at all integers. By our inductive hypothesis, sin(πz)
divides h(z). Arguing as in the case n = 2, we also have that sin(πz) divides
λ2 (eµ1z − eµ2z). Since

f(z) = h(z)− λ2 (eµ1z − eµ2z) ,

this gives us that sin(πz) divides f(z). Q.E.D.

We will finally prove Shapiros Conjecture in the case of at least one simple
exponential polynomial. This is where the property that exp maps surjectively onto
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the multiplicative group of K comes into play. We will fix a logarithm function from
K× to K, denoted by log, which satisfies for all z ∈ K,

exp(log z) = z

and
log(exp z) = z + 2kπi

for some k ∈ Z. In C the logarithm function is locally single-valued. Since we work
in a general field, we cannot assume a similar property. However, for our purpose
an arbitrary choice of values for log from point to point is sufficient.

Theorem 3.7. Let f and g be two exponential polynomials in E with infinitely
many common zeros such that at least one of f and g is simple. Then there exists
an exponential polynomial h in E such that h is a common divisor of f and g in the
ring E, and h has infinitely many zeros in K.

Proof. Let f, g ∈ E with infinitely many common roots, and assume, without loss of
generality, that f is simple. By Remark 3.3 we can take α1, . . . , αL, ρ ∈ K, where
ρ 6= 0, and a unit u(z) ∈ E such that

f(z) = u(z) ·
L∏
j=1

(1− αjeρz) .

Since this is a finite product of factors and f and g have infinitely many common
zeros, g must have infinitely many common zeros with one of the factors, say (1 −
α1eρz). These zeros must be of the form

z =
2kπi + log

(
α−1

1

)
ρ

for k ∈ Z. Thus, the exponential polynomial

g∗(z) = g

2zπi + log
(
α−1

1

)
ρ


vanishes at infinitely many integers. By Lemma3.5, the set of integers on which g∗

vanishes is the finite union of sets of the form {m+ kd | k ∈ Z} for somem, d ∈ Z, at
least one of which has d 6= 0. Let {m+ kd | k ∈ Z} be such an arithmetic progression
with d 6= 0. Now g∗(m + zd) is an exponential polynomial which vanishes at all
integers. By Lemma3.6, sin(πz) divides g∗(m+ zd).

Considering the divisor (1−α1eρz) of f(z) again, we note that any z of the form

z =
2kπi + log

(
α−1

1

)
ρ

,

13
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for some k ∈ Z, is a zero of f . Hence, any integer is a zero of the exponential
polynomial

f∗(z) = f

2zπi + log
(
α−1

1

)
ρ

 .
In particular, all integers of the form m+kd, for some k ∈ Z, are zeros of f∗. Hence,
also f∗(m + zd) is an exponential polynomial which vanishes at all integers and is
thus divisible by sin(πz).

Tracing back the change of variable from f and g to f∗ and g∗, we obtain that
the simple exponential polynomial

h(z) = sin

π
d

ρz − log
(
α−1

1

)
2πi −m


is a common divisor of f(z) and g(z) with infinitely many zeros.

Q.E.D.

Case 2: Now we consider the case that both f and g are irreducible. If f = u · g
for some unit u ∈ E , then g is the required common divisor of f and g in Shapiro’s
Conjecture. In the case that f and g are distinct irreducibles, that is, they are
not unit multiples of each other, they cannot have a common divisor. It therefore
suffices to prove the following theorem:

Theorem 3.8 (SC). Let f and g be distinct irreducible exponential polynomials in
E. Then f and g have at most finitely many common zeros.

For the rest of this section, we will assume that f and g are distinct irreducibles
with infinitely many common zeros and eventually lead this assumption to a con-
tradiction. We will mostly follow the arguments of D’Aquino, Macintyre and Terzo
[6], section 5, which are based on results on group varieties associated to exponential
polynomials and in this context the work of Bombieri, Masser and Zannier [3], as well
as a result on linear functions on groups of finite rank from Evertse, Schlickewei and
Schmidt [7]. We only consider those steps in detail which assume Schanuel’s Con-
jecture. D’Aquino, Macintyre and Terzo prove an equivalent version of Theorem3.8
assuming Schanuel’s Conjecture ([6] p. 606):

Let f and g be exponential polynomials, and assume f is irreducible. If f and g
have infinitely many common zeros then f divides g.
We will therefore use a slightly different argument in the last step of our proof.

For f(z) = λ1eµ1z + . . .+ λneµnz and g(z) = ρ1eσ1z + . . .+ ρmeσmz, let L denote
the linear dimension of the union of the supports of f and g, i. e.

L = ldimQ (supp(f) ∪ supp(g)) .

14
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Fix a Z-basis B = {b1, . . . , bL} of the group generated by µ, σ, that is, the additive
subgroup of (K,+) generated by µ1, . . . , µn, σ1, . . . , σm.

Since {b1, . . . , bL} forms a Z-basis of the group generated by µ, σ, each eµiz

and eσjz can be expressed as a finite product of integer powers of elements in{
eb1 , . . . , ebL

}
. By introdrucing the variables

Y1 = eb1z, . . . , YL = ebLz,

we can express f(z) and g(z) as the corresponding Laurent polynomials

F̃ (Y1, . . . , YL), G̃(Y1, . . . , YL) ∈ Q
(
λ, ρ

) [
Y ±1

1 , . . . , Y ±1
L

]
,

that is, F̃ (Y1, . . . , YL) and G̃(Y1, . . . , YL) are polynomials in L variables over Q
(
λ, ρ

)
allowing both non-negative and negative powers of the variables. By multiplying F̃
and G̃ by suitable monomials, we obtain regular polynomials

F (Y1, . . . , YL), G(Y1, . . . , YL) ∈ Q
(
λ, ρ

)
[Y1, . . . , YL]

respectively.

Remark 3.9. If s is a common zero of f and g, then
(
eb1s, . . . , ebLs

)
is a common

zero of F and G. Since we only consider zeros of F and G whose components are
all non-zero, it does not make a difference whether we consider common zeros of F
and G or of F̃ and G̃ for the study of common zeros of f and g.

Let
V (F ) =

{
(v1, . . . , vL) ∈ (K×)L | F (v1, . . . , vL) = 0

}
and

V (G) =
{

(v1, . . . , vL) ∈ (K×)L | G(v1, . . . , vL) = 0
}
.

These are algebraic varieties over the Lth power of the multiplicative group of K.
In the next section, we will explain more details of algebraic varieties, in particular
over C.

Remark 3.10. The dimension of an algebraic variety V ⊆ (K×)L over K indicates
the maximal number of components of a point in V we can choose arbitrarily, or
equivalently the maximal number of algebraically independent components of which
a point in V can consist. Let H be the algebraic closure of Q

(
λ, ρ

)
. A factorisation

of F in H[Y1, . . . , YL] would determine a factorisation of f in E . Since f and g are
distinct irreducibles in E , the corresponding polynomials F and G are irreducibles
in H[Y1, . . . , YL] which are distinct, in the sense that neither is a monomial times
the other. Hence, we obtain

dimV (F ) = dimV (G) = L− 1,

15
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and for V (F,G) =
{

(v1, . . . , vL) ∈ (K×)L | F (v1, . . . , vL) = G(v1, . . . , vL) = 0
}
,

dimV (F,G) ≤ L− 2.

Let S be a set of infinitely many common non-zero zeros of f and g. For any
T ⊆ S and s ∈ S we introduce some shorthand notations:

bs = (b1s, . . . , bLs),

ebs = (eb1s, . . . , ebLs),

Bs = {b1s, . . . , bLs} ,

BT =
⋃
t∈T

Bt,

and
eBT = {ea | a ∈ BT} .

By Remark 3.9, {
ebs | s ∈ S

}
is an infinite set of common zeros of F and G. For finite T ⊂ S, we denote by D(T )
the linear dimension of spanQ(BT ), the vector space over Q spanned by BT ,

D(T ) = ldimQ(BT ).

Note that D(T ) ≤ |B||T | = L|T |, and D({s}) = L for any s ∈ S, as 0 /∈ S.
Moreover, let τ1 = tdQ(λ, ρ) and τ2 = tdQ(µ, σ).

The next two lemmas give us upper bounds on D(T ) and rely on the assumption
of Schanuel’s Conjecture.

Lemma 3.11 (SC). Let T be a finite subset of S with D(T ) = L|T |. Then |T | ≤
τ1 + τ2.

Proof. Suppose that T ⊂ S is finite with D(T ) = L|T |. For any t ∈ T , we obtain a
corresponding common zero of F and G,

ebt ∈ V (F,G).

By Remark 3.10, dimV (F,G) ≤ L − 2. Since F and G are polynomials with co-
effiecients in Q

(
λ, ρ

)
, we have that

tdQ(λ,ρ)
(
ebt
)
≤ L− 2.

Hence,
tdQ

(
eBT

)
≤ (L− 2)|T |+ τ1.

16
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Moreover, since BT ⊂ Q(µ, σ, T ), we also have that

tdQ(BT ) ≤ |T |+ τ2.

Hence,
tdQ

(
BT, eBT

)
≤ (L− 1)|T |+ τ1 + τ2.

Schanuel’s Conjecture, Version 2, implies

tdQ
(
BT, eBT

)
≥ D(T ).

Using D(T ) = L|T |, this gives us the estimate

L|T | ≤ (L− 1)|T |+ τ1 + τ2,

whence
|T | ≤ τ1 + τ2.

Q.E.D.

Let k0 be the maximal cardinality of a finite subset T of S such thatD(T ) = L|T |
holds, and fix T0 ⊂ S of cardinality k0 with D(T ) = Lk0. The following lemma gives
us an upper bound on D(T ) for finite extensions of T0.

Lemma 3.12 (SC). Let T ⊂ S be a finite extension of T0 by k elements. Then

D(T0) ≤ D(T ) ≤ τ1 + τ2 + k(L− 1).

Proof. Suppose that T0 ⊆ T ⊂ S such that |T | − |T0| = k. Clearly D(T0) ≤ D(T ).
Assume that there existed t ∈ T \ T0 such that for all 1 ≤ j ≤ L,

bjt /∈ spanQ(BT0 ∪ {b1t, . . . , bj−1t}).

Then

D(T0 ∪ {t}) = ldimQ(BT0 ∪Bt)

= ldimQ(BT0) + ldimQ(Bt)

= D(T0) +D({t})

= L(k0 + 1).

This contradicts the maximality of k0 with the property that D(T0) = |T0|. Hence,
for any of the k possible elements t ∈ T \T0, there exists at least one element bj ∈ B
such that bjt ∈ spanQ(BT0 ∪ {b1t, . . . , bj−1t}). Using the result |T0| ≤ τ1 + τ2 from
the previous lemma, this gives us the upper bound on D(T )

D(T ) ≤ τ1 + τ2 + k(L− 1).

Q.E.D.

17
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Using arguments similar to the ones used in the proofs of the previous two
lemmas, we can find an upper bound on the transcendence degree of BS over Q.

Lemma 3.13. The transcendence degree of BS over Q is at most τ1 + 2τ2.

Proof. Fix any s ∈ S \ T0. Arguing as in the proof of Lemma3.12, we obtain that
there exists at least one element bj ∈ B such that bjs ∈ spanQ(BT0∪{b1s, . . . , bj−1s}).
Hence, there exist α1, . . . , αj−1 ∈ Q such that

(α1b1 + . . .+ αj−1bj−1 + bj)s ∈ spanQ(BT0).

Since b1, . . . , bj areQ-linearly independent, we have that (α1b1+. . .+αj−1bj−1+bj) 6=
0, whence

s = (α1b1 + . . .+ αj−1bj−1 + bj)−1 · a,

for some a ∈ spanQ(BT0). We obtain that s ∈ Q(BT0 ∪ B). Hence, S \ T0 ⊂
Q(BT0 ∪B). Clearly, also T0 ⊂ Q(BT0 ∪B), and thus,

Q(BS) ⊆ Q(BT0 ∪B).

Note that B ⊂ Q(µ, σ), and that |T0| ≤ τ1 + τ2, by Lemma3.11. Hence,

tdQ(BS) ≤ tdQ(BT0 ∪B)

≤ tdQ(B) + tdQ(B)(BT0)

≤ tdQ(µ, σ) + |T0|

≤ τ2 + τ1 + τ2

= τ1 + 2τ2.

Q.E.D.

In order to proceed to our main lemma, we need to use a main result from
Bombieri, Masser and Zannier [3] on anomalous subvarieties.

Definition 3.14 (See [3] p. 3.). Let X be an irreducible subvariety of (K×)n. An
irreducible subvariety Y of X is X-anomalous if it is contained in a coset of an
algebraic subgroup Γ of (K×)n satisfying

dimY > max {0,dimX − codim Γ} ,

where codim Γ = n − dim Γ. Moreover, if X is not contained in any strictly larger
anomalous subvariety of V , then it is maximal.

The following result is proved in [3] over the field C. However, as [6] notes, it
also holds for any algebraically closed field of characteristic 0.

18
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Theorem 3.15 (See [3] Theorem1.4 and [6] Theorem4.4). Let X be an irreducible
variety in (K×)n of positive dimension defined over K. Then there exists a finite
collection ΦX of proper algebraic tori A such that for all A ∈ ΦX ,

1 ≤ n− dimA ≤ X.

Moreover, every maximal X-anomalous subvariety Y of X is a component of V ∩Aθ,
the intersection of V with a coset Aθ, for some A ∈ ΦX and θ ∈ (K×)n.

The following lemma is the key step in the proof of Shapiro’s Conjecture. We
will show the existence of an infinite set S′ of common zeros of f and g whose Q-
linear dimension is finite. This will eventually lead to a contradiction. We will not
give as much detail as in other proofs in this paper, but we will highlight the main
steps and mention in particular when Schanuel’s Conjecture and the lemmas based
on Schanuel’s Conjecture are applied. A detailed proof can be found in [6], p. 608 ff.

Lemma 3.16 (SC). There exists a finite subset S′ of S such that the Q-vector space
spanned by S′ is finite dimensional.

Proof. Consider an irreducible component C of the variety V (F,G) defined over
H, the algebraic closure of Q(λ, ρ), such that for infinitely many s ∈ S, the point(
eb1s, . . . , ebLs

)
is contained in C. We now only consider the infinite subset{

s ∈ S |
(
ebs
)
∈ C

}
of S and continue to call it S. By Remark 3.10, the dimension of C over H is at
most L− 2.

Let s = (s1, . . . , sk) be a tuple of finitely many distinct elements of S, and
let T be the set of entries of s. Since the Q-linear relations amongst bs1, . . . , bsk

can be transformed into Z-linear ones, they induce multiplicative relations between
ebs1 , . . . , ebsk . This determines an algebraic subgroup Γk of (K×)Lk, generated by
ebs1 , . . . , ebsk , with codimension Lk−D(T ) and dimension D(T ) over Q. The (Lk)-
tuple

(
ebs1 , . . . , ebsk

)
lies in Ck. We have the upper bound

tdQ
(
ebs1 , . . . , ebsk

)
≤ k(L− 2) + τ1.

Since
(
ebs1 , . . . , ebsk

)
also lies in Γk, we will work with the irreducible component

Ws ⊆ Ck ∩ Γk containing the point
(
ebs1 , . . . , ebsk

)
over H.

Claim 1. For k > τ1 + τ2, either Ws is anomalous or of dimension 0 over H.
We can use the upper bounds established earlier to prove this claim. If Ws is

not anomalous, then

dim(Ws) ≤ dim
(
CLk

)
− codim (Γk)
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≤ k(L− 2) + τ1 − (Lk −D(T )).

By Schanuel’s Conjecture and Lemma3.13,

D(T ) ≤ dim(Ws) + τ1 + 2τ2.

Hence,
k ≤ τ1 + τ2,

proving the claim.

Suppose that s∗ is obtained from s by rearranging the entries. Using automor-
phisms of affine (Lk)-spaces, one can show that Ws has dimension 0 over L if and
only if Ws∗ has dimension 0, and Ws is anomalous if and only if Ws∗ is anomalous.

Claim 2. If dimWs = 0, then D(T ) ≤ 2τ1 + 2τ2.
If dimWs = 0, then the components of all points in dimWs are algebraic over

H. Hence,
tdQ

(
ebs1 , . . . , ebsk

)
≤ τ1.

By Lemma3.13,
tdQ

(
bs1, . . . , bsk

)
≤ τ1 + 2τ2.

Hence, by Schanuel’s Conjecture,

D(T ) ≤ 2τ1 + 2τ2.

As a result, if D(T ) > 2τ1 + 2τ2, then Ws∗ is anomalous for any arrangement s∗ of
the elements in T .

Now we work with a countably infinite subset {s1, s2 . . .} of S and continue to call
it S. This enumeration naturally induces an order (<) on S. Let Tk = {s1, . . . , sk},
and Wk = Ws for some tuple s enumerating Tk.

If infinitely many Wk are of dimension 0, then by Claim 2, for infinitely many k,

D(Tk) ≤ 2(τ1 + τ2).

Hence, ldimQ(S) is finite, as required.
Consider the case that there exists k′ such that for all k ≥ k′, the variety Wk

has dimension 0 and is therefore anomalous, by Claim 1. The remaining steps of
this proof include results from [3] as well as one instance of Ramsey’s Theorem on
colourings of sufficiently large complete graphs.

Let k1 be the least integer with the property that for any (k1 + 1)-tuple s in
S, the corresponding variety Ws is Ck1+1-anomalous. Fix such a variety W . By
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Theorem3.15, or more generally the Structure Theorem from [3], there exist proper
algebraic tori A1, . . . , Ar of (K×)(k1+1)L such that each maximal anomalous subvari-
ety of Ck1+1 is a component of Ck1+1∩Ajθ for some 1 ≤ j ≤ r and θ ∈ (K×)(k1+1)L.
For each 1 ≤ j ≤ r, pick a single relation

(x1)αj,1 · . . . ·
(
x(k1+1)L

)αj,(k1+1)L = 1

which is a condition of the torus Aj , and let Qj be the multiplicative subgroup
of (K×)(k1+1)L of codimension 1 defined by this relation. Now every anomalous
subvariety of (K×)(k1+1)L is contained in a coset of one of Q1, . . . , Qr. This coset
can be defined over H. Hence, there exists θW ∈ H such that for all w ∈W ,

wαj =
(k1+1)L∏
i=1

w
αj,i

i = θW ,

for some 1 ≤ j ≤ (k1 + 1)L.
We define a colouring on [S]k1+1, the set of all subsets of S of cardinality k1 + 1,

as follows:
ϕ : [S]k1+1 → {α1, . . . , αr} ,

where a set in [S]k1+1 with corresponding tuple s is mapped to αj for the minimum
j such that Ws is contained in a coset over H of Qj .

By Ramsey’s Theorem, there exist an infinite set R ⊆ S and a fixed j0 such that ϕ
takes the constant value αj0 on [R]k1+1. Rewrite αj0 ∈ Z(k1+1)L as the concatenation
of the tuples β ∈ Zk1L and γ ∈ ZL, i. e.

αj0 = βγ.

Suppose that γ 6= 0. Let T = {η1, . . . , ηk1} ⊂ R with ordering η1 < . . . < ηk1

inherited from S. For each s ∈ R \ T such that ηk1 < s, the set

T ∪ {s}

lies in [R]k1+1. Hence, there exists θs ∈ H such that

(
ebη1 . . . ebηk1

)β (
ebs
)γ

= θs.

Let E =
(
ebη1 . . . ebηk1

)β
. Then

(
ebs
)γ

= θs
E
∈ H(E).

Hence,
tdQ

({
e(b·γ)s | s ∈ T \R

})
≤ tdQ(H(E)).
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Since tdQ(H(E)) is finite, Schanuel’s Conjecture implies that

ldimQ
({(

b · γ
)
s | s ∈ T \R

})
is finite. Since γ 6= 0 and b is linearly independent, the inner product b·γ is non-zero.
Hence, S′ = T \ R is an infinite subset of S such that the Q-vector space spanned
by S′ is finite dimensional.

In the case that γ = 0, we can shift to the next block of length L in β which is
non-zero, then complete the tuple and argue similarly.

Q.E.D.

Now we can assume that S, the set of infinitely common non-zero zeros of f and
g, spans a finite dimensional vector space over Q. Let Γ be the divisible hull of the
multiplicative group generated by

{eµjs | 1 ≤ j ≤ n, s ∈ S} ,

that is, for every γ ∈ Γ and any non-zero integer `, there exists ζ ∈ Γ such that
ζ` = γ, and Γ is the smallest such group containing {eµjs | 1 ≤ j ≤ n, s ∈ S}. Note
that all multiplicative dependencies between the elements of Γ correspond to additive
dependencies of elements in

spanQ({µjs | 1 ≤ j ≤ n, s ∈ S}) = spanQ(µ1S ∪ . . . ∪ µnS).

Since spanQ(S) is finite dimensional, Γ has finite rank. We will use this fact to apply
a result from Evertse, Schlickewei and Schmidt [7] on linear functions on finite rank
groups.

Definition 3.17. A solution (v1, . . . , vN ) of the linear equation

a1x1 + . . .+ aNxN = 1

over K is non-degenerate if for every proper non-empty subset J of {1, . . . , N},∑
j∈J

ajvj 6= 0.

Theorem 3.18 (See [7] Theorem1.1). Let N be a positive integer, and let Λ be a
subgroup of (K×)N with finite rank r. Then any linear equation

a1x1 + . . .+ aNxN = 1 (3.1)

over K with a1, . . . , aN 6= 0 has at most

exp
(
(6N)3N (r + 1)

)
many non-degenerate solutions in Λ, where exp denotes the standard exponential
function on R.
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Later we will only use the fact that there exists a finite upper bound on the
number of non-degenerate solutions in Λ. In order to apply this result, we need to
find an equation of the form (3.1) corresponding to f(z) = 0.

Let q = ldimQ(S) and fix a Q-basis {s1, . . . , sq} of spanQ(S). Let s ∈ S. Then
there exist c1, . . . , cq ∈ Q such that

s =
q∑
i=1

cisi.

Hence,

0 = f(s) = λ1

q∏
i=1

eµ1cisi + . . .+ λn

q∏
i=1

eµncisi ,

and
ωs =

( q∏
i=1

eµ1cisi , . . . ,
q∏
i=1

eµncisi

)
∈ Γ

is a solution of the equation

λ1x1 + . . .+ λnxn = 0. (3.2)

Since λn 6= 0, we can set

λ′j =
(
−λn

q∏
i=1

eµncisi

)−1

λj

for 1 ≤ j ≤ n− 1. Then

λ′1

q∏
i=1

eµ1cisi + . . .+ λ′n−1

q∏
i=1

eµn−1cisi = 1

and so
ω∗s =

( q∏
i=1

eµ1cisi , . . . ,
q∏
i=1

eµn−1cisi

)
is a solution of the equation

λ′1y1 + . . .+ λ′n−1yn−1 = 1, (3.3)

which is of the required form in (3.1). Note that all solutions of (3.3) lie in some
group Γ∗, a subgroup of Γ of finite rank. We can therefore apply Theorem3.18 to
obtain that there are only finitely many non-degenerate solutions of (3.3) in Γ∗.

For the proof of Theorem3.8, we will state a last lemma which does not depend
on Schanuel’s Conjecture.

Lemma 3.19 (See [6] Lemma5.6). Let h ∈ E be an exponential polynomial which
is not simple, and let s1 and s2 be two distinct non-zero zeros of h. Suppose that

α1x1 + . . .+ αNxN = 0

is the equation of the form (3.2) corresponding to h. Then the solutions correspond-
ing to s1 and s2 are different.
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Proof of Theorem3.8. Let f, g ∈ E be distinct irreducibles, and assume that they
have infinitely many common zeros in K. These are the same assumptions that we
made throughout this section. We will therefore be able to apply all results and to
use the same notation.

We will show by induction on the length of f that g divides f . Since f and g

are distinct irreducibles, this will lead to the required contradiction.
Suppose that f(z) = λ1eµ1z + λ2eµ2z. Then

f(z) = λ1eµ1z
(
1 + λ−1

1 λ2e(µ2−µ1)z
)
,

and g(z) has infinitely many common zeros with
(
1 + λ−1

1 λ2e(µ2−µ1)z
)
. Arguing

as in the proof of Theorem3.7, we obtain an exponential polynomial of the form
sin(T (z)) dividing both f(z) and g(z). Since g is irreducible, this implies that g
divides f .

Now suppose that for every exponential polynomial h distinct from g and of
length strictly less than n, if h and g have infinitely many common zeros, then g

divides h.
Let n > 2, and let

λ′1y1 + . . .+ λ′n−1yn−1 = 1 (3.4)

be the linear equation associated to f(z) = λ1eµ1z + . . .+λneµnz = 0 as in (3.3). As
we noted earlier, we can apply Theorem3.18 to show that Γ∗ only contains finitely
many non-degenerate solutions

ω∗s =
(
ω

(s)
1 , . . . , ω

(s)
n−1

)
of this linear equation. Consider the equation as in (3.2) associated to f(z) = 0,

λ1x1 + . . .+ λnxn = 0. (3.5)

By Lemma3.19, this has infinitely many distinct solutions

ωs =
(
ω

(s)
1 , . . . , ω(s)

n

)
∈ Γ,

each of which corresponds to some s ∈ S. Without loss of generality, we can assume
that there are infinitely many solutions ωs which differ in the first component, as
otherwise we can just relabel the equations and the components of the solution.
Each solution ωs of (3.5) can be turned into a solution ω∗s of (3.4) by removing the
last component of ωs. Hence, there are infinitely many distinct solutions ω∗s of (3.4),
each of which is determined by some s ∈ S. By Theorem3.18, all but finitely many
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ω∗s are degenerate. Hence, for infinitely many solutions ωs =
(
ω

(s)
1 , . . . , ω

(s)
n

)
of (3.5)

there exists a proper non-empty Js ⊂ {1, . . . , n} such that∑
j∈Js

λjω
(s)
j = 0.

Since {1, . . . , n} only has a finite number of distinct subsets, and there are infinitely
many subsets Js, there exists a proper non-empty

J ′ = {j1, . . . , jt} ⊂ {1, . . . , n}

such that for infinitely many s ∈ S we have∑
j∈J ′

λjω
(s)
j = 0.

Hence, the linear equation

λj1xj1 + . . .+ λjtxjt = 0

has infinitely many solutions corresponding to common zeros of f(z) and g(z).
Let

f1(z) = λj1eµj1z + . . .+ λjteµjtz,

and
f2(z) = f(z)− f1(z).

It follows that the exponential polynomial g(z) has infinitely many common zeros
with f1(z) which are also zeros of f(z) and thus also zeros of f2(z).

Since J is a proper non-empty subset of {1, . . . , n}, both f1 and f2 are expo-
nential polynomials of length strictly less than n. By Ritt’s factorisation theorem
(Theorem3.4), g has infinitely many common zeros with either an irreducible or a
simple factor of f1 in E . Call this factor h1(z). If h1 is simple, we are in Case 1 of
Shapiro’s Conjecture, and g and h1 must have a common divisor. Since g is irre-
ducible, it then divides h1. If h1 is irreducible, then it is either a unit multiple of
g, in which case g divides h1, or g and h1 are distinct irreducibles, in which case g
divides h1, by our inductive hypothesis. Hence, in all cases g divides h1 and thus it
also divides f1. We can argue similarly to show that g divides f2.

Hence, g divides f . This completes the induction and thus the proof.
Q.E.D.

3.2 Generic solutions of polynomial exponential equations

Generic points played an important role in the advancement of Algebraic Geome-
try in the second third of the last century, e. g. in Weil’s foundational approach to
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Algebraic Geometry [32]. They have some useful properties in the context of alge-
braically closed fields, such as the complex numbers C, which we are dealing with.
We will only give a brief outline of the background in Algebraic Geometry which we
will use. Further properties of generic points are assumed to be known to the reader.

A variety V in C2 is a set of common zeros of a collection of polynomial equations
in C[X,Y ]. It is a well-known fact that in C2 any variety can be expressed as the
set of zeros of a single polynomial. Thus, for every variety V ,

V = {(X,Y ) ∈ C× C | p(X,Y ) = 0}

for some p(X,Y ) ∈ C[X,Y ]. The variety V is then also called a curve. It is
irreducible if it cannot be expressed as the union of two proper subvarieties. In C
this is the case when p(X,Y ) is an irreducible polynomial.

In general fields F , a point of a variety V defined over F is generic over F if
it does not lie in any proper subvariety of V defined over F , or equivalently if ev-
ery polynomial which is satisfied by the point is satisfied by the whole variety (see
Marker [20] p. 227). Intuitively, generic points have properties similar to variables.
For instance, if an algebraic function maps a generic point of a curve C1 to a generic
point of a curve C2, then it maps the whole curve C1 onto C2. In our context,
Definition 2.9 suffices to identify generic points of the curves we consider.

Recall Theorem2.8:

Theorem 2.8 (SC). Suppose that p(X,Y ) ∈ Q[X,Y ] is irreducible and depends on
both X and Y . Then there are infinitely many algebraically independent zeros of
f(z) = p(z, ez).

The proof of this theorem consists of two parts: Firstly we will show in a slightly
more general case that f has infinitely many zeros, and secondly we establish alge-
braic independence of the zeros in our specific case.

Our first lemma is a direct application of Hadamard’s Factorisation Theorem of
entire functions (see e. g. [4] §3).

Lemma 3.20. Let p(X,Y ) ∈ C[X,Y ] \ C[X] and f(z) = (z, ez). Suppose that f
only has finitely many zeros. Then there exist a constant a ∈ C and q(X) ∈ C[X]
such that

f(z) = eazq(z).

Since Hadamard’s Factorisation Theorem is only applicable to entire functions,
by using this result we restrict all further conclusions to the setting Cexp.
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The next theorem relates the expressions in the ring of exponential terms

C[X1, . . . , Xn]exp

with the corresponding functions from Cn to C. Following Henson and Rubel [9]
(Definition 5.1) we can introduce C[X1, . . . , Xn]exp formally as the collection of the
following terms:

• every variable X1, . . . , Xn is a term;

• every complex number is a constant term;

• if s and t are terms, so are their sum (s + t), their product (s · t) and expo-
nentiation exp(s).

The identities stating when two terms are equal in C[X1, . . . , Xn]exp are the ones
making (C[X1, . . . , Xn]exp,+, ·) a commutative ring with identity, all rules relating
the constant terms in C and the identity exp(s + t) = (exp(s) · exp(t)) (for a full
description see [9] Theorem5.2). To every term in C[X1, . . . , Xn]exp we can assign
a holomorphic function on Cn in the trivial way, i. e. by interpreting the variable
terms as variables of the function, the constant terms as the corresponding complex
numbers and +, · and exp as the corresponding operations in Cexp.

Theorem 3.21. The natural homomorphism from C[X1, . . . , Xn]exp to the ring of
holomorphic functions from Cn to C is injective.

This theorem was not only proved by [9] but independently by van den Dries in
[29], Corollary 4.2.

The existence of infinitely zeros of f is a corollary of this theorem for the case
n = 1.

Corollary 3.22. Let p(X,Y ) ∈ C[X,Y ] be an irreducible polynomial which depends
on X and Y . Then f(z) = p(z, ez) has infinitely many zeros.

Proof. Assume that p(X,Y ) ∈ C[X,Y ] is an irreducible polynomial depending on
X and Y such that f(z) = p(z, ez) only has finitely many zeros. By Lemma3.20
there exist a ∈ C and q(X) ∈ C[X] such that

f(z)− eazq(z) = 0.

f(z) − eazq(z) corresponds to a term in the ring of exponential terms C[X]exp. By
Theorem3.21 this term must be the zero term in C[X]exp. This forces a to be a
non-negative integer. We obtain

p(X,Y ) = Y aq(X).
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Since p depends on both X and Y , neither Y a nor q(X) are equal to 1. Hence,
p(X,Y ) is reducible, which contradicts our assumption of p(X,Y ) being irreducible.

Q.E.D.

Schanuel’s Conjecture first comes into play when we go one step further, that is,
when we show the existence of algebraically independent zeros. For the remaining
parts of the proof of Theorem2.8 we restrict p(X,Y ) to lie in Q[X,Y ], the set of
polynomials in two variables over the algebraic closure of Q, rather than C[X,Y ].
Moreover, p(X,Y ) is assumed to be irreducible and dependent on both X and Y .
We fix f(z) = p(z, ez).

First we consider a single non-zero zero v of f and show its transcendence over Q
by using the Lindemann-Weierstrass Theorem, an important result in Transcendence
Theory.

Theorem 3.23 (Lindemann-Weierstrass Theorem). If α1, . . . , αn are algebraic num-
bers which are linearly independent over Q, then eα1 , . . . , eαn are algebraically inde-
pendent over Q.

Proposition 3.24. If f(v) = 0 and v 6= 0, then v is transcendental over Q and
generic, i. e. tdQ(v, ev) = 1.

Proof. Suppose that f(v) = 0 and v 6= 0. Assume that v were algebraic over Q.
Then p(v, Y ) ∈ Q[Y ]. Since p(v, ev) = 0, also ev is algebraic over Q. This contradicts
the Lindemann-Weierstrass Theorem. Hence, v is transcendental over Q, yielding
tdQ(v) = 1. Now p(v, Y ) ∈ Q(v)[Y ], whence ev is algebraic over Q(v), and we obtain
tdQ(v, ev) = 1. Q.E.D.

Next we want to establish algebraic independence of a pair of zeros of f . When
we consider two distinct zeros v, w of f , we need to exclude the case w = −v, as for
example

p(X,Y ) = 1 +X2Y + Y 2

would give us p(−v, e−v) = 0 whenever p(v, ev) = 0.

Theorem 3.25 (SC). Suppose that v and w are non-zero such that f(v) = f(w) = 0
and v 6= ±w, then v and w are algebraically independent.

Proof. Since v, w 6= 0, they are transcendental and generic over Q by Proposi-
tion 3.24.

Assume that v and w were algebraically dependent. Then

tdQ(v, w, ev, ew) = tdQ(v, w) = tdQ(v) = 1.
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By Schanuel’s Conjecture, v and w are Q-linearly dependent. So there exist coprime
integers m,n such that

mv = nw.

Without loss of generality we can assume that n > 0.
Let u = v

n . We obtain

ev = (eu)n and ew = (eu)m.

For every positive integer j let Cj ⊂ C × C× be the curve given by p(jX, Y j) = 0.
Since

p(mu, (eu)m) = p(w, ew) = 0

and
p(nu, (eu)n) = p(v, ev) = 0,

(u, eu) lies in Cm ∩Cn. Since the varieties Cm and Cn have non-empty intersection,
they have a common irreducible component. Thus p(nX, Y n) and p(mX,Y m) have
a common irreducible factor.

[21] uses an argument from algebraic geometry on generic points to show that
the nth roots of unity act transitively on the irreducible components of Cn in the
following sense:

If we factorise p(nX, Y n) into irreducibles

p(nX, Y n) =
∏̀
j=1

qj(X,Y )sj ,

then each qj(X,Y ) is of the form q1(X,ωY ) for some nth root of unity ω, and
s1 = . . . = s` = s, say. Note for a later proof using a similar argument that each
irreducible factor depends on both X and Y .

We obtain
degX p = `s degX q1,

where degX describes the degree of p(X,Y ) considered as a polynomial in C[Y ][X],
and

n degY p = `s degY q1.

In the case m > 0 we can similarly factorise p(mX,Y m) into irreducibles

p(mX,Y m) =
k∏
j=1

rj(X,Y )t,

such that r1(X,Y ) = q1(X,Y ), the common irreducible factor of p(nX, Y n) and
p(mX,Y m).
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Considering the degrees as before,

`s degX q1 = deg p = kt degX q1.

Since degX p 6= 0, we obtain
`s = kt 6= 0.

Thus, by the second equality,

n degY p = `s degY q1 = kt degY q1 = mdegY p.

Since degY p 6= 0, we finally obtain n = m contradicting the fact that m and n are
coprime.

In the case m < 0, consider the polynomial

g(X,Y ) = Y −m degY pp(mX,Y m)

instead of p(mX,Y m). Note that degX g = degX p and degY g = −mdegY p. By
a similar argument and analysis of the degrees as before, we obtain that −n = m,
also contradicting coprimality of m and n. Q.E.D.

We finally proceed to proving the existence of infinitely many algebraically inde-
pendent zeros. Note that an infinite collection of complex numbers is algebraically
independent if and only if every finite subcollection is algebraically independent. It
thus suffices to prove algebraic independence for finite collections of zeros of f . We
will first do this under the additional assumption on p that the curve defined by
p(mX,Y m) = 0 is irreducible for every non-zero m ∈ Z and then show the result
for the general case. Following the terminology of [21], such a polynomial p is called
primitive.

Theorem 3.26 (SC). Let p be primitive and let v1, . . . , vn be non-zero zeros of
f(z) = p(z, ez) with vi 6= ±vj for all i 6= j. Then v1, . . . , vn are algebraically
independent.

Proof. Suppose that p is primitive. Assume that there exists an algebraically de-
pendent collection v1, . . . , vn, vn+1 of n + 1 non-zero zeros of f such that vi 6= ±vj
for all i 6= j. Assume further that n is minimal with this property.

By Theorem3.25, two such zeros are always algebraically independent. Thus we
must have n ≥ 2. Moreover, by minimality of n, the collection v1, . . . , vn must be
algebraically independent. Hence,

tdQ(v1, . . . , vn+1, ev1 , . . . , evn+1) = n < n+ 1.
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By Schanuel’s Conjecture, v1, . . . , vn+1 are Q-linearly independent. Thus there exist
integers k1, . . . , kn,m with no common divisor such that

n∑
j=1

kjvj = mvn+1.

Let uj = vj

m . Let C ⊂ C × C× be the curve defined by p(X,Y ) = 0 and Cm ⊂
C×C× be the curve defined by p(mX,Y m) = 0. As we took p to be primitive, Cm is
irreducible. Since v1, . . . , vn are algebraically independent, so are u1, . . . , un. Hence,
(u1, eu1), . . . , (un, eun) are generic points on Cm with tdQ(u1, eu1 , . . . , un, eun) = n.
In particular, (u1, eu1 , . . . , un, eun) is a generic point in Cnm.

Define the map

ϕ : (C× C×)n → C× C×, (x1, y1, . . . , xn, yn) 7→

 n∑
j=1

kjxj ,
n∏
j=1

y
kj

j

 .
Since ϕ maps (u1, eu1 , . . . , un, eun) in Cnm to (vn+1, evn+1), which is a generic point
in C, and Cm is irreducible, ϕ actually maps Cnm to C. Hence, for any points
(x1, ex1), . . . , (xn, exn) in Cm,

ϕ(x1, ex1 , . . . , xn, exn) =

 n∑
j=1

kjxj ,
n∏
j=1

ekjxj


lies in C. Note that for any zeros w1, . . . , wn of f , the pairs(

w1
m
, e

w1
m

)
, . . . ,

(
wn
m
, e

wn
m

)
lie in Cm. It follows that the sum

n∑
j=1

kj
m
wj (3.6)

is also a zero of f . Setting w1 = w2 = v1 and wj = vj for all j > 2, we obtain that

w = k1 + k2
m

v1 + k3
m
v3 + . . .+ kn

m
vn (3.7)

is also a zero of f . Consider the case n > 2. Since v1, . . . , vn are algebraically
independent and k1, . . . , kn are non-zero, w can neither be 0 nor ±vj for any j.
Thus, we have constructed an algebraically dependent collection v1, v3 . . . , vn, w of
n non-zero zeros of f , contradicting the minimality of n. Hence, n = 2 remains as
the only possible case.

In this case, v1, v2, v3 is our collection of algebraically dependent non-zero zeros
of f , satisfying

mv3 = k1v1 + k2v2.
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Using (3.7), we can also find another zero w of f with

w = k1 + k2
m

v1.

By Proposition 3.24, if v1 and w are two algebraically dependent zeros of f , either
one of them is 0 or w = ±v1. Since v1 6= 0, only the cases w = 0 or k1 + k2 = ±m
are possible.

We will consider each case separately and apply individual arguments leading to
contradictions.

Suppose that w = 0. Then k1 + k2 = 0. Setting w1 = v1 and w2 = 0 in
(3.6), k1

m v1 is also a zero of f . Similarly k2
m v1 is a zero of f . Since v1 6= 0, this is

again, by Proposition 3.24, possible if and only if k1 = −k2 = ±m. As the integers
k1, k2,m have no common divisor, we can, without loss of generality, assume that
v3 = v1 − v2. Then v1 = v2 + v3, and by changing the roles of the variables and
setting w1 = w2 = v2 in (3.6), 2v2 is also a non-zero zero of f . This contradicts
Proposition 3.24.

Suppose that k1 + k2 = m. Recall that mv3 = k1v1 + k2v2. By switching the
roles of the variables and multiplying by −1 if necessary, we may assume, without
loss of generality, that |m| ≥ |k1| , |k2| and k1,m > 0. In particular 0 < k1

m < 1.
Construct a sequence (zj) of zeros of f by z1 := v1 and

zj+1 := k1
m
zj + k2

m
v2

for all j ≥ 1. Using the fact that k2
m = 1 − k1

m , a simple induction on k shows that
for all j ≥ 0,

zj+1 =
(
k1
m

)j
v1 +

(
1−

(
k1
m

)j)
v2.

Since 0 < k1
m < 1, the coefficient

(
k1
m

)j
of v1 takes a different value for each j. By

algebraic independence of v1 and v2, the sequence (zj) takes infinitely many distinct
values. Finally, let M = max {v1, v2}. Then

|zj+1| ≤
∣∣∣∣∣
(
k1
m

)j∣∣∣∣∣M +
∣∣∣∣∣1−

(
k1
m

)j∣∣∣∣∣M ≤ 2M.

So there are infinitely many zeros of f lying in the disc centred at 0 with radius 2M .
Hence, there exists an accumulation point of zeros of f , which must also be a zero.
Since f is an entire function, this implies that f = 0, a contradiction.

Finally, suppose that k1 + k2 = −m. Then k1
m + k2

m = −1. Set s = k1
m . Then

k2
m = −(1 + s), and

v3 = sv1 − (1 + s)v2.
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With w1 = v3 and w2 = v2 in (3.6), we see that

w̃ = sv3 − (1 + s)v2

is a zero of f . Substituting the first equation into the second, we obtain

w̃ = s2v1 − (1 + s)2v2.

Treating v1, v2, w̃ as our algebraically dependent collection of zeros of f and arguing
as before, we obtain that s2 − (1 + s)2 = −2s − 1 must equal 0 or ±1. The cases
s2−(1+s)2 = 0 and s2−(1+s)2 = 1 would lead to contradiction as already shown.5

In the remaining case −2s− 1 = −1, we obtain that s = 0 and hence that k1 = 0, a
contradiction. Q.E.D.

Using this theorem, the proof of the main result of this section can by done by
strong induction on the X-degree of p.

Proof of Theorem2.8. Let p(X,Y ) ∈ Q[X,Y ] be irreducible and dependent
on both X and Y , and let f(z) = p(z, ez), an entire function. By Corollary 3.22, f
has infinitely many zeros.

If p is primitive, then by Theorem3.26 there exist infinitely many algebraically
independent zeros of f , namely any collection of non-zero zeros (vj)j∈J , for some
index set J , satisfying vi 6= ±vj for all i 6= j in J .

If p is not primitive, then let Cm ⊂ C×C× be a curve defined by p(mX,Y m) for
some m such that Cm is reducible. Then Cm has an irreducible component defined
by some polynomial r(X,Y ) ∈ Q[X,Y ]. Arguing as in the proof of Theorem3.25,
we obtain that r depends on both X and Y , and

0 < degX r < degX p.

Now we argue by induction on degX p.
Suppose that degX p = 1. Then p must be primitive, as otherwise there would be

a polynomial r such that 0 < degX r < 1. Hence, f has infinitely many algebraically
independent zeros.

As inductive hypothesis, suppose that for all irreducible polynomials q(X,Y ) ∈
Q[X,Y ] depending on both X and Y such that degX q < degX p, the entire function
g(z) = q(z, ez) has infinitely many algebraically independent zeros.

If p is primitive, then we are already done. Otherwise there exists r(X,Y ) ∈
Q[X,Y ], as defined before, such that degX r < degX p and r is irreducible and

5In the case s2 − (1 + s)2 = 1, we could alternatively argue that then −2s − 1 = 1, whence
s = −1. This would give us k2 = 0 and k1 = −m, thus the contradiction v3 = −v1.
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depends on both X and Y . By our hypothesis, the entire function h(z) = r(z, ez)
has infinitely many algebraically independent zeros u1, u2, . . . say. Since r(X,Y )
is a factor of p(mX,Y m), we have f(muj) = p(muj , emuj ) = 0 for all j. Hence,
mu1,mu2, . . . is an infinite collection of algebraically independent zeros of f .

Q.E.D.

When considering the irreducible polynomial p(X,Y ) = X − q(Y ) for some
polynomial in one variable q(Y ) ∈ Q[Y ], this result yields that, assuming Schanuel’s
Conjecture, the entire function f(z) = z − q(ez) has infinitely many algebraically
independent zeros, and thus the exponential polynomial q(ez) has infinitely many
fixed points. Choosing q(Y ) = Y , this implies that the exponential function ez has
infinitely many algebraically independent fixed points.

Marker asked in [21] whether this property of ez can be proved without assuming
Schanuel’s Conjecture – so far this remains an open question.

Another question asked by Marker is whether one could prove Theorem2.8 for
the case that p is not defined over a number field, i. e. a finite or equivalently alge-
braic field extension of Q. In 2014 Mantova managed to find a generalisation and
thus an answer to this question presented in [19]. In the following, we will consider
Mantova’s results and outline the structure of his proof.

Recall the statement of the main theorem of [19]:

Theorem 2.10 (SC). For any finitely generated field k ⊂ C, and for any irreducible
polynomial p(X,Y ) ∈ k[X,Y ] depending on both X and Y , the equation

p(z, ez) = 0

has a solution generic over k.

Mantova actually proves this theorem not only for Cexp but for any exponential
field (satisfying Schanuel’s Conjecture) and where p(z, ez) has infinitely many zeros.
As we saw earlier in this section, our proof that p(z, ez) has infinitely many zeros
requires Hadamard’s Factorisation Theorem and therefore restricts p(z, ez) to Cexp.
We will therefore only state the results leading to the proof of Theorem2.10 over
Cexp.

The general idea of the proof is to show that p(z, ez) only has finitely many zeros
in k, the algebraic closure of k. This forces the other zeros to be generic over k. We
will briefly summarise the four steps leading to the proof.

In the first step, the setting is changed to a finite dimensional Q-vector space by
the following result:
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Proposition 3.27 (SC). There exists a finite dimensional Q-vector space L ⊂ C
containing all zeros of p(z, ez) in k.

As a corollary, if b ∈ C` is a basis for L, where ` = dimQ(L), then p(z, ez) has
finitely many zeros in k if and only if there are only finitely many q ∈ Q` such that

p
(
q · b, eq·b

)
= 0.

In the second step, Mantova uses the main result from Günaydin [8] (Theo-
rem1.1) to reduce the problem to counting integer solutions:

Proposition 3.28. There exists a Q-linearly independent b′ ∈ C` such that

p
(
q · b, eq·b

)
= 0

has only finitely many rational solutions q ∈ Q` if and only if

p
(
m · b′, em·b′

)
= 0

has only finitely many integer solutions m ∈ Z`.

A further reduction to counting solutions only involving algebraic exponential
expressions is made in the third step. Here, Mantova uses the main result from
Zannier [34] (Theorem1) to prove the following proposition:

Proposition 3.29. There are finitely many irreducible polynomials r(X,Y ) ∈ C[X,Y ]
dependent on both X and Y , and there exists a Q-linearly independent c ⊂ L with
ec ⊂ Q such that

p
(
m · b′, em·b′

)
= 0

has only finitely many integer solutions m ∈ Z` if and only if each equation

r
(
m′ · c, em′·c

)
= 0

has only finitely many integer solutions m′ ∈ Z`′, where `′ denotes the length of c.

Finally, in the fourth step the existence of only finitely many integer solutions
of each equation r

(
m′ · c, em′·c

)
= 0 is proved by considering the cases 2πi ∈ L and

2πi /∈ L and using some arithmetic on Q. By the previous propositions, this shows
that p(z, ez) only has finitely many zeros in k and hence proves Theorem2.10.

Mantova’s argument does not make use of any of the results from Marker [21].
Thus, Marker’s result (Theorem2.8) is a consequence of Mantova’s theorem (Theo-
rem2.10) as follows:
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Aussume Schanuel’s Conjecture, and suppose that p(X,Y ) ∈ Q[X,Y ] is irre-
ducible and depends on both X and Y . Let k be the field obtained by adjoining the
coefficients of p to Q. By Theorem2.10, there exists a zero v ∈ C of p(z, ez) such
that (v, ev) is generic over k. Since p(X,Y ) ∈ k(v), the argument can be repeated
to show the existence of infinitely many algebraically independent zeros of p(z, ez)
in C.

We do, however, note that Mantova uses other strong results from (Transcen-
dental) Number Theory whereas Marker’s argument only involves basic results from
Algebraic Geometry. This also makes the study of the proof of Marker’s theorem
worthwhile.

4 Zilber’s pseudo-exponential fields

As we mentioned previously, some of the questions related to Schanuel’s Conjecture
arise from Zilber [36]. In this paper Zilber constructs a non-first-order sentence ax-
iomatising a class of structures imitating Cexp and satisfying Schanuel’s Conjecture.
Those structures are called pseudo-exponential fields. Moreover, he proves that this
class has a unique model in every uncountable cardinality. As a result, if one could
show that the unique model of cardinality continuum, denoted by Bexp, is isomorphic
to Cexp, Schanuel’s Conjecture would be proved.

4.1 Infinitary Logic

Since Zilber uses infinitary logic, as opposed to first-order logic, for the axiomatisa-
tion of his pseudo-exponential fields, we will give a very short introduction to the
basics and terminology of this area of Logic. This can, for example, be found in
Keisler and Knight [11].

Definition 4.1. Let L be a language of first-order logic with equality whose alphabet
contains a collection of non-logical symbols τ . For infinite cardinals µ ≤ κ we define
the infinitary logic Lκ,µ as the language with κ variables, equality and all non-logical
symbols of τ , such that the following formulas are admitted:

• all formulas of L;

• conjunctions and disjunctions of sets of Lκ,µ-formulas of size strictly less than
κ;

• formulas obtained by applying existential and universal quantifiers over sets
of variables of size strictly less than µ.

Remark 4.2. Lω,ω is the usual first-order logic. We call formulas in Lω,ω finitary.
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Since no further non-logical symbols are added to L to obtain an infinitary logic,
the structures satisfying Lκ,µ-formulas are L-structures.

Definition 4.3 (Satisfaction for Lκ,µ-formulas). Let µ ≤ κ be infinite cardinals,
A be an L-structure and s be an assignment on the set of variables {vα | α < κ}.
Denote the restriction of s to {vα | α < ω}, the set of variables in first-order logic,
by s̃.
For an L-formula ϕ,

A |=s ϕ :⇐⇒ A |=s̃ ϕ.

For a set Σ of Lκ,µ-formulas such that |Σ| < κ, we define

A |=s

∧
ϕ∈Σ

ϕ :⇐⇒ A |=s ϕ for all ϕ ∈ Σ,

and
A |=s

∨
ϕ∈Σ

ϕ :⇐⇒ A |=s ϕ for some ϕ ∈ Σ.

For a family of variables v = (vi)i∈I with some index set I of cardinality less than µ
and an Lκ,µ-formula ϕ, we define

A |=s ∀v ϕ :⇐⇒ A |=s[v|a] ϕ for all families a = (ai)i∈I in dom(A),

where s[v|a] denotes the assignment obtained from s by substituting, for all i ∈ I,
the image of vi with ai in the domain of A, and

A |=s ∃v ϕ :⇐⇒ A |=s[v|a] ϕ for some family a in dom(A).

In infinitary logic, some classes of structures can be axiomatised with a single
sentence. For instance, Archimedean ordered fields are the models of the conjuction
of the usual axioms for ordered fields together with

∀x
∨
n∈ω

1 + . . .+ 1︸ ︷︷ ︸
n times

> x.

This is a Lω1,ω-sentence.
The infinitary logic Lω1,ω has ω1 variables, countable conjunctions and disjunc-

tions and finite quantifiers. It becomes important in the following part, in which we
look at Zilber’s sentence axiomatising his pseudo-exponential fields.

4.2 Summary of axioms and properties

We will briefly summarise some of the most important results of [36]. Zilber con-
structs an Lω1,ω(Q)-sentence axiomatising the so-called strongly exponentially-al-
gebraically closed fields with pseudo-exponentiation, which are very similar to Cexp.
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Here Q stands for an additional quantifier in the language expressing “there exist
uncountably many”. He proceeds by showing that there is a unique model, up to
isomorphism, of a given uncountable cardinality. Finally he gives two conditions un-
der which Cexp is exactly that unique model. Those two conditions can be re-stated
as two conjectures about Cexp, the first being Schanuel’s Conjecture and the second
that certain systems of exponential equations in Cexp have complex solutions. A
simple version of the latter one was considered in Section 3.2.

Since Zilber presents a very technical construction of his pseudo-exponential
fields, a detailed description would go beyond the scope of this dissertation. Instead
we will use the summaries in Marker [21], Kirby [13] and Shkop [27] to explain the
properties of Zilber’s pseudo-exponential fields and how they are related to the ap-
plications of Schanuel’s Conjecture in Sections 3.1&3.2.

There are five axioms which Zilber’s fields satisfy. All of them can be stated
in the language Lω,ω1(Q) using non-logical symbols (+, ·, exp). We will state them,
explain the terminology, clarify in which logic they are expressible (finitary or in-
finitary), and comment on their connection with Cexp. For a detailed analysis and
discussion of these axioms, see [13], section 2.

A strongly exponentially-algebraically closed field with pseudo-exponentiation
(K,+, ·, 0, 1, exp), as introduced by Zilber, satisfies the following five axioms:

(Z1) ELA-field: The abbreviation ELA stands for the following properties of K:

• Exponential: The exponential map exp on K is a homomorphism from
its additive group (K,+) to its multiplicative group (K×, ·). (K is an
exponential field.)
• Logarithm: exp : (K,+) → (K×, ·) is surjective. (A logarithm function

can be defined.)
• Algebraically closed: K is of characteristic 0, and every non-constant

polynomial in K[X] has a root in K. (K is algebraically closed.)

(Z2) Standard kernel: The kernel of the exponential map

ker(exp) = {x ∈ K | exp(x) = 1}

is an infinite cyclic group generated by a transcendental element α, that is, an
element which is not the root of a non-zero polynomial with coefficients in the
copy of Q in K (or equivalently with coefficients in the copy of Z in K).

These first two axioms imply that Zilber’s fields satisfy the conditions of the
exponential fields considered in Section 3.1. Hence, Shapiro’s Conjecture holds in
K.
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4 Zilber’s pseudo-exponential fields

(Z3) Schanuel property: Schanuel’s Conjecture holds in K. Using Version 2, this
means that for the predimension function δ and any tuple a from K

δ(a) ≥ 0.

Again, we can consider Q as a subfield of K, since K has characteristic 0.

The next axiom builds on several yet undefined terms. As they will not be
considered specifically thereafter, we will not explain them for general n but only
for the case n = 1 in Cexp, which was treated in Section 3.2.

(Z4) Strong exponential-algebraic closure: For all finite A ⊂ K, if V ⊆ Kn ×
(K×)n is an irreducible, free and normal variety, then there exists a point
(x, exp(x)) ∈ V which is generic over A.

For n = 1 and in Cexp the conditions on V translate as follows: Let V be a
variety in C2. As we explained at the beginning of Section 3.2, V is a curve defined
by

V = {(X,Y ) ∈ C× C | p(X,Y ) = 0}

for some p(X,Y ) ∈ C[X,Y ], and it is irreducible if and only if p(X,Y ) is an irre-
ducible polynomial. We only consider the points of V lying in C×C×, since we are
only interested in solutions of p(z, ez) not allowing us zero in the second component.
V is normal if its dimension is non-zero. Since C is algebraically closed, this holds
whenever p(X,Y ) is non-constant. Finally, V is free if for all non-zero ` ∈ Z and
non-zero b ∈ C,

V 6⊆
{
(X,Y ) ∈ C× C× | `X = b

}
and

V 6⊆
{

(X,Y ) ∈ C× C× | Y ` = b
}
.

Since restrictions for these sets only depend on one variable, this yields that V is
free whenever p(X,Y ) depends on both X and Y .

The conclusion under these conditions is that for every finite set A ⊂ C there
exists a point (z, ez) ∈ V which is generic over A, meaning that (z, ez) has transcen-
dence degree 1 over Q(A). In our special case this means that there is an infinite
set of algebraically independent zeros of the entire function f(z) = p(z, ez) on C, as
finitely many could lie in such a set A.

Theorem2.8 makes the further restriction that the polynomial p must lie in
Q[X,Y ] rather than C[X,Y ] and hence only proves a very specific case of (Z3) in
Cexp.

The generalisation showing that property (Z4) holds in Cexp for the simplest case
n = 1 with no further restrictions is given in Theorem2.10.
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Algebraic closure of a field means that every polynomial in one variable with
coefficients from that field has a zero which lies in the field. Interpreting (Z4) in
terms of exponential polynomials and zeros thereof makes it clear why this property
is called strong exponential-algebraic closure, where the attribute “strong” stands
for the additional property of zeros being generic points.

For the last axiom, we will give one more definition. If K has the Schanuel
property (Z3), then for any finite set A ⊂ K the predimension satisfies δ(A) ≥ 0
(see Version 2 of Schanuel’s Conjecture, considering the finite set A as a tuple).

Definition 4.4. For finite A ⊂ K, we define

d(A) := inf {δ(B) | A ⊆ B ⊂ A and B is finite} .

The Schanuel closure scl of A is defined by

scl(A) := {a ∈ K | d(A ∪ {a}) = d(A)} .

(Z5) Countable closure property: For any finite set A ⊂ K, the Schanuel closure
scl(A) is countable.

Zilber’s sentence is the conjunction of these five axioms.
(Z1): This axiom is finitary, i. e. first-order expressible, and Cexp satisfies all

conditions.
(Z2): This axiom can be split into three parts, two of which are finitary. The

third part states that the multiplicative stabiliser of ker(exp),

Z(K) = {a ∈ K | ∀x (y ∈ ker(exp) → ax ∈ ker(exp))} ,

is in fact the copy of Z in K. This is expressed as

(∀a ∈ Z(K))
∨
n∈ω

(r =̇ 1 + . . .+ 1︸ ︷︷ ︸
n times

∨ r + 1 + . . .+ 1︸ ︷︷ ︸
n times

=̇ 0.)

(Note that (∀a ∈ Z(K)), 0 and 1 are all standard abbreviations and could be
embedded as finitary formulas.) This sentence is not finitary but a single Lω,ω1-
sentence. In Cexp this axiom is satisfied. The kernel of exp is the infinite cyclic
group generated by the transcendental element 2πi, since ez = 1 if and only if z is
an integer multiple of 2πi.

(Z1) and (Z2) were chosen such that they hold in Cexp.
(Z3): Provided (Z2) holds, it turns out that Schanuel’s Conjecture is equiva-

lent to an axiom scheme consisting of countably many finitary sentences and thus
expressible as a single Lω,ω1-sentence (see [13] section 2.2).
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(Z4): Provided (Z1), (Z2) and (Z3) hold, this is finitary (see [13] section 2.3). It
is yet to be shown that Cexp satisfies this condition.

(Z5): This is expressible as an L(Q)-scheme and therefore as a Lω,ω1(Q)-sentence
(see [13] section 2.4). Also this condition is satisfied by Cexp, as proved in [36],
Lemma5.12.

Since Cexp satisfies (Z1), (Z2) and (Z5), if one showed that (Z3) and (Z4) also hold
in Cexp, it would already follow that Cexp is the unique model of Zilber’s sentence of
cardinality continuum Bexp. One further step was made by [13], Theorem1. It says
that if Cexp and Bexp are elementarily equivalent, then they are isomorphic. We will
state the equivalence between those conjectures as a theorem.

Theorem 4.5. The following conjectures about Zilber’s exponential field Bexp of
cardinality continuum are equivalent:

1. Cexp and Bexp are isomorphic.

2. Cexp and Bexp are elementarily equivalent.

3. Cexp satisfies (Z3) and (Z4), i. e. Schanuel’s Conjecture holds in Cexp and
Cexp is strongly exponentially-algebraically closed.

It is hard to see how conjecture 1 (or 2) can be proved without proving Schanuel’s
Conjecture in Cexp. An attempt has been made by Bleybel [2] but seems not to have
succeeded. On the other hand, [21] and [19] managed to prove a simple case of the
strong exponential-algebraical closure property (Z3) (see section 3.2), only assuming
that (Z4), Schanuel’s Conjecture, holds in Cexp, and thus possibly made another
step towards the proof of conjecture 3. Since these results on Cexp are quite recent,
it is possible that a proof of property (Z3) in Cexp under the assumption of (Z4) is
not too far away. If this could be shown, then Cexp would be isomorphic to Bexp

if and only if Schanuel’s Conjecture holds in Cexp. Moreover, [19] showed that the
simplest case of (Z4) holds in any exponential field which satisfies (Z3) and with
infinitely many zeros of the corresponding polynomial exponential equations. If this
could be shown for the general case, (Z4) could be replaced by a weaker condition.

Nevertheless, all results in both Model Theory and Transcendental Number The-
ory which may have made progress towards the proof of Schanuel’s Conjecture, al-
though being intrinsicly interesting and somewhat powerful, still leave us with the
impression that a proof of this significant conjecture stays out of our reach.
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5 Conclusion

5.1 Summary of recent results on Schanuel’s Conjecture

Although the proof of Schanuel’s Conjecture still seems to be out of reach, we
can see that research in exponential fields has made some progress since Zilber’s
model theoretical approach in [36]. We have seen two instances of how Schanuel’s
Conjecture implies major results on Cexp: The first one is Shapiro’s Conjecture
(Section 3.1), also applicable to more general exponential fields which include Zilber’s
fields. The second one is the existence of generic solutions of polynomial exponential
equations (Section 3.2). There are many more applications in other areas, such as
exponential rings (e. g. Terzo [28] and Macintyre [17] in the exponential subring of
R).

Since all applications of Schanuel’s Conjecture in Cexp yield results which will
only become valid once the conjecture has been proved, one may think that conclu-
sions in this context do not make any real progress in the analysis of Cexp. However,
every application of Schanuel’s Conjecture which can also be applied to Zilber’s
field gives us results which are already valid, as those fields are constructed such
that Schanuel’s Conjecture holds in them. Shapiro’s Conjecture is one such exam-
ple. On the other hand, Schanuel’s Conjecture can be used to advance the study of
the strong exponential-algebraical closure property in Cexp, as shown in Section 3.2.
This might subsequently lead towards the result that Cexp and Bexp are isomorphic
if and only if Schanuel’s Conjecture holds in Cexp.

D’Aquino, Macintyre and Terzo emphasise in [6], p. 598 f., the importance of
Schanuel’s Conjecture:

“A very distinguished number theorist has remarked that if one assumes Schanuel’s
Conjecture one can prove anything. The sense of this is clear if one restricts ‘any-
thing’ to refer to statements in transcendence theory.”

We will give a short overview of recent results on Schanuel’s Conjecture with refer-
ences to the corresponding papers.

Bays, Kirby and Wilkie prove in [1] an analogue of Schanuel’s conjecture for
raising to the power of an exponentially transcendental real number.

Theorem 5.1 ([1] Theorem1.1). Let λ ∈ R be exponentially transcendental, and let
y ∈ (R>0)n be multiplicatively independent. Then

td
(
y, yλ/λ

)
≥ n.
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td(X/Y ) is short for td(Q(X,Y )/Q(Y )).
More generally:

Theorem 5.2 ([1] Theorem1.2). Let K be an exponential field, let λ ∈ K be expo-
nentially transcendental, and let x ∈ Kn such that exp(x) is multiplicatively inde-
pendent. Then

td(exp(x), exp(λx)/λ) ≥ n.

On the other hand, assuming Schanuel’s Conjecture yields some interesting re-
sults. For instance, D’Aquino, Macintyre and Terzo [5] prove the Schanuel Nullstel-
lensatz in Bexp:

Theorem 5.3. Let p(X1, . . . , Xn) be an exponential polynomial with coefficients in
Bexp. If p 6= exp(q(X1, . . . , Xn)) for any exponential polynomial q(X1, . . . , Xn), then
p has a root in Bexp

Here, exponential polynomials allow multiple instances of exponentiation. Shkop
presents an alternative proof of this theorem only using basic exponential algebra
and idependent of Schanuel’s Conjecture in [25] and [26]. In [25], she also proves a
special case of Shapiro’s Conjecture in pseudo-exponential fields:

Theorem 5.4. Let K be an algebraically closed field satisfying Schanuel’s Conjec-
ture. Suppose that

p(x) =
n∑
j=1

aj exp(bjx) and q(x) =
m∑
j=1

cj exp(djx),

where aj , bj , cj , dj ∈ Q, have no common factors aside from units in the exponential
subring of K[x]exp generated by Q[x]. Then p and q have only finitely many common
zeros in K.

5.2 Open questions

To complete this survey, we will collect a few open questions and problems related
to Schanuel’s Conjecture and the complex exponential field Cexp.

• (Mycielski [22] p. 308) Does Cexp have an automorphism other than the identity
and complex conjugation?

This questions is closely related to the following (see Zilber [35]):

• ([21] p. 791) Is R definable in Cexp? And more generally:

• ([35] p. 226, [21] p. 791) Does Cexp have the property of quasi-minimality, that
is, is every definable set in Cexp countable or co-countable?
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Zilber [36] showed that the answer to the second question is positive in Bexp. As
a consequence, R would not be definable in Cexp if Bexp and Cexp were shown to be
isomorphic.

• ([19]) Does Schanuel’s Conjecture imply the strong exponential-algebraic clo-
sure property in Cexp, and more generally, in Zilber’s fields of any uncountable
cardinality?

• ([21] p. 797) Can we find infinitely many algebraically independent fixed points
of ez without using Schanuel’s Conjecture?
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