18 Script zur Vorlesung: Algebra 1 (WiSe2020-2021)

Prof. Dr. Salma Kuhlmann

In diesem Skript werden wir Abschnitt §19 beginnen; Normalreihen einführen, Satz 17.5 benutzen um den Verfeinerungssatz von Schreier sowie den Satz von Jordan-Hölder zu beweisen.

§19: Einfache und auflösbare Gruppen

Definition 18.1. Sei G eine Gruppe.

- 1. Eine normale Teilgruppe $N \leq G$ heißt auch Normalteiler von G. Wir schreiben auch $G \trianglerighteq N$ dafür.
- 2. G ist einfach falls G nicht-trivial ist (i.e. $G \neq 1$) und 1 und G die einzige Normalteiler von G sind.

Proposition 18.2. Eine nicht-triviale abelsche Gruppe G ist genau dann einfach wenn $G \simeq \mathbb{Z}_p$ für eine Primzahl p (i.e. G ist zyklisch von primer Ordnung p).

- Beweis. 1. Sei G eine abelsche Gruppe. Dann ist jede Teilgruppe N von G normal (weil die Bedingung (*) in Proposition 15.8 stets für N erfüllt ist, wenn G abelsch ist). G ist also genau dann einfach wenn ihre einzige Teilgruppen 1 und G sind. (Insbesondere ist \mathbb{Z}_p einfach, wegen Lagrange's Satz).
 - 2. Sei nun G einfach. Aus 1. folgt, dass G von jedem nicht-trivialen Element erzeugt ist, also G ist zyklisch. Wenn G zyklisch und unendlich ist, und x ein Erzeuger von G, dann ist z.B. x^2 kein Erzeuger von G (s. Proposition 14.11). Es folgt: G ist endlich und zyklisch und jedes Element $x \neq 1$ erzeugt G.

Sei nun $x \neq 1$ ein Erzeuger von G, $p \in \mathbb{N}$ eine Primzahl die |x| teilt. Dann ist $|x^p| < |x|$ (s. Proposition 14.11) und daher ist x^p kein Erzeuger, also ist $x^p = 1$. Daraus folgt |G| = p.

Definition 18.3. Sei G eine Gruppe.

1. Eine Kette von Teilgruppen

$$1 = G_0 \le G_1 \le \ldots \le G_s = G$$

heißt Normalreihe falls $G_i \subseteq G_{i+1}$ für alle $i = 0, \dots, s$ gilt.

- 2. Die Quotienten G_{i+1}/G_i für $i=0,\ldots,s-1$ heißen Faktorgruppen, oder die Faktoren oder die Quotienten der Normalreihe.
- 3. Eine Normalreihe heißt Kompositionsreihe falls alle Faktorgruppen einfach sind.
- 4. In diesem Fall heißen die Faktorgruppen Kompositionsfaktoren von G.

5. Eine Normalreihe

$$1 = G_0 \le G_1 \le \ldots \le G_s = G$$

heißt Verfeinerung einer anderen Normalreihe

$$1 = H_0 \le H_2 \le \ldots \le H_r = G$$

falls H_0, \ldots, H_r eine Teilkette von G_0, \ldots, G_s ist.

Beispiel: Die Gruppe A_4 ist normal in S_4 , weil $[S_4 : A_4] = 2$ (s. ÜB). Im ÜB wird ferner gezeigt, dass die Teilgruppe (die *kleinsche Vierergruppe*)

$$V = \{(1), (12)(34), (13)(24), (14)(23)\}$$

ein Normalteiler von A_4 ist. Somit ist

$$\{1\} \unlhd V \unlhd A_4 \unlhd S_4$$

eine Normalreihe für S_4 .

Definition 18.4. Zwei Normalreihen heißen äquivalent falls es eine Bijektion zwischen ihren Faktorgruppen gibt, und entsprechende Faktorgruppen isomorph sind. Das heißt zwei Reihen

$$H_0 \unlhd \cdots \unlhd H_i \unlhd H_{i+1} \unlhd \cdots \unlhd G$$

und
$$K_0 \unlhd \cdots \unlhd K_j \unlhd K_{j+1} \unlhd \cdots \unlhd G$$

sind äquivalent, wenn es eine Bijektion $i \to j$ gibt, so dass die korrespondierenden Faktoren isomorph sind: $H_{i+1}/H_i \simeq K_{j+1}/K_j$.

Beispiel: Betrachte die folgende Kompositionsreihen für \mathbb{Z}_{30} :

$$\mathbb{Z}_{30} \ge \langle 5 \rangle \ge \langle 10 \rangle \ge \{0\}$$

$$\mathbb{Z}_{30} \ge \langle 3 \rangle \ge \langle 6 \rangle \ge \{0\}.$$

Die Kompositionsfaktoren der ersten Reihe sind $\mathbb{Z}_{30}/\langle 5 \rangle \simeq \mathbb{Z}_5$, $\langle 5 \rangle/\langle 10 \rangle \simeq \mathbb{Z}_2$ und $\langle 10 \rangle/\langle 0 \rangle \simeq \mathbb{Z}_3$. Die Kompositionsfaktoren der ersten Reihe sind $\mathbb{Z}_{30}/\langle 3 \rangle \simeq \mathbb{Z}_3$, $\langle 3 \rangle/\langle 6 \rangle \simeq \mathbb{Z}_2$ und $\langle 6 \rangle/\langle 0 \rangle \simeq \mathbb{Z}_5$. Daher sind die zwei Kompositionsreihen äquivalent.

 ${f Satz}$ 18.5 (Verfeinerungssatz von Schreier). Zwei Normalreihen einer Gruppe G haben äquivalente Verfeinerungen.

Beweis. Seien

$$1 = G_0 \unlhd G_1 \unlhd \ldots \unlhd G_s = G$$

und

$$(2) 1 = H_0 \unlhd H_1 \unlhd \ldots \unlhd H_r = G$$

Normalreihen. Sei $G_{i,j} := G_i(G_{i+1} \cap H_j)$ für $0 \le j \le r$. Dann

$$G_{i,0} = G_i\{1\} = G_i$$
 und $G_{i,r} = G_i(G_{i+1} \cap G) = G_{i+1}$.

(also haben wir r weitere Glieder zwischen G_i und G_{i+1} eingefügt).

Da $G_i \subseteq G_{i+1}$ und $H_j \subseteq H_{j+1}$, aus dem Lemma von Zassenhaus (mit $a=G_i,\ A=G_{i+1},\ b=H_j$ und $B=H_{i+1}$) folgt

$$G_{i,i} = G_i(G_{i+1} \cap H_i) \le G_i(G_{i+1} \cap H_{i+1}) = G_{i,i+1}.$$

Somit ist die folgende Normalreihe eine Verfeinerung von (1):

$$\{1\} \leq G_{0,0} \leq G_{0,1} \leq \ldots \leq G_{0,r} = G_{1,0} \leq G_{1,1} \leq \ldots \leq G_{s-1,r} = G_s = G.$$

Sei nun $H_{i,j} := H_i(H_{i+1} \cap G_j)$ für $0 \le j \le s$. Ähnlich wie oben, ist

$$\{1\} \unlhd H_{0,0} \unlhd H_{0,1} \unlhd \ldots \unlhd H_{0,s} = H_{1,0} \unlhd H_{1,1} \unlhd \ldots \unlhd H_{r-1,s} = H_r = G.$$

eine Verfeinerung von (2). Nun, aus dem Lemma von Zassenhaus (mit $a = G_i$, $A = G_{i+1}$, $b = H_j$ und $B = H_{j+1}$) folgt

$$\frac{G_i(G_{i+1} \cap H_{j+1})}{G_i(G_{i+1} \cap H_j)} \simeq \frac{H_j(H_{j+1} \cap G_{i+1})}{H_j(H_{j+1} \cap G_i)}$$

das heißt:

$$G_{i,j+1}/G_{i,j} \simeq H_{j,i+1}/H_{j,i}.$$

Satz 18.6 (Satz von Jordan-Hölder). Sei G eine endliche Gruppe mit $G \neq 1$. Dann gelten

- 1. G hat eine Kompositionsreihe
- 2. alle Kompositionsreihen von G sind äquivalent.

Beweis. 1. Wenn G einfach ist, dann ist $\{1\} \leq G$ bereits eine Kompositionsreihe.

Sei nun G nicht einfach. Da G endlich ist, hat sie einen maximalen echten Normalteiler N. Dann ist G/N einfach, nach dem Korrespondenzsatz 17.4. Nach Induktion auf |G| hat G eine Kompositionsreihe. ÜA.

2. Nach dem Korrespondenzsatz 17.4 haben Kompositionsreihen keine echte Verfeinerungen; wenn $G_i ext{ } ex$

Definition 18.7.

G heißt auflösbar, wenn es eine Normalreihe mit abelschen Faktoren hat.

Bemerkung 18.8.

Jede abelsche Gruppe ist trivialerweise auflösbar. Betrachte $G \triangleright \{1\}$.

Erinnerung (s. LA II, Kapitel II, § 6; Skripte 6 und 7.) Sei $n \ge 3$, dann ist

- 1. $|S_n/A_n| = 2$
- 2. S_n ist nicht abelsch
- 3. A_n ist nicht abelsch für n > 3 (Begründung: (123) und (234) kommutieren nicht!)

Beispiel 18.9.

 S_n ist auflösbar für $n \le 4$: S_1 und S_2 sind abelsch also auflösbar. Wir betrachten nun:

1. $S_3 \trianglerighteq A_3 \trianglerighteq \{1\}$

 $|S_3/A_3| = 2$ $|A_3/\{1\}| = 3$: Diese zwei Gruppen haben als Ordnung eine Primzahl. Es folgt aus Lagrange, dass die Gruppen zyklisch sind, also abelsch.

2. $S_4 \trianglerighteq A_4 \trianglerighteq V \trianglerighteq W \trianglerighteq \{1\}$, wobei V die kleinsche Vierergruppe ist und $W := \{1, (12)(34)\}$.

$$|S_4/A_4| = 2$$
 $|A_4/V| = 3$ $|V/W| = 2$.

Die Faktorgruppen sind also \mathbb{Z}_2 und \mathbb{Z}_3 .