Department of Mathematics and Statistics University
of Konstanz
  Logo der Universität Konstanz

Winter semester 2020/21

Proseminar on Linear Algebra
organized by Lothar Sebastian Krapp and Michele Serra

Final Handouts
Skew-symmetric bilinear forms (G. Schöckle)
Applications of Jordan forms to systems of linear ordinary differential equations (S. Dean)

Wednesdays 13:30-15:00, Room D406
This seminar cycle will be held in presence in the university. The possibility of attending and/or giving the talk in video conference is available for the students who cannot enter the campus because of the restrictions due to the Coronavirus.

Description
The aim of this cycle of seminars is to develop in more detail some topics that were introduced in the course "Lineare Algebra II" from the Summer Semester 2020. The talks could deal with operators on inner product spaces, applications of the spectral theorem, bilinear forms, as well as direct methods for linear systems and their applications. Further suggestions are welcome. Each talk will provide a review of the results from the literature about one of these topics and illustrate them with examples and applications. Every student should also produce a short handout about the material developed in her/his own talk.
--> Video-Description of the Proseminar

Prerequisites
This seminar is primarily aimed at third-semester Bachelor in Mathematics (Haupt- oder Nebenfach) students, but is also suitable for students of Lehramt and Bachelor/Master of Education in Mathematics.

Validation
BA Proseminar (3 ECTS), Fachseminar (B.Ed., M.Ed. - 5 ECTS)

Language
The language of the seminar can be either German or English.

Preliminary meeting
A preliminary discussion for the assignment of the topics will take place on Wednesday July 15th from 15.15 to 16.45 in video conference on Cisco Webex Meetings (click here to join the meeting). If you are interested in delivering a seminar in this cycle but cannot participate in the preliminary meeting, please contact the organizers.
--> Presentation of the Proseminar used for the discussion in the Preliminary Meeting

Possible topics
Participants can find some ideas and references for preparing their seminars in this list of possible topics. Further suggestions are of course welcome.

The Final Schedule is available in the shared cloud folder.


Instructions and deadlines
Each participant will:
Personal Tutorial in video conference
A personal tutorial in video conference will be offered to each of the participants on the Tuesday 15:00-16:30 of the week before her/his talk to assist her/him in the preparation of the talk, abstract and handout. In case more assistance should be needed, further personal tutorials can be arranged by appointment.


Using LaTeX for preparing handouts and presentations

ANNOUNCEMENTS
  • October 1st The final schedule of the talks is now available!
  • The role of co-organizer of Maria Infusino is now taken over by Michele Serra.




    Last update: 09 February 2021

    Datenschutzhinweise: Alle Infos zum Datenschutz. Mit der Teilnahme an einer synchronen Online-Veranstaltung stimmen alle Teilnehmerinnen und Teilnehmer der des Proseminars zur Linearen Algebra den Datenschutzbestimmungen zu. Der Beitritt zu Webkonferenzen (alle synchronen Online-Angebote) ist nicht zulässig, wenn den aufgeführten Datenschutzinformationen zum jeweiligen Webkonferenztool und den Modalitäten der Veranstaltungen von den Teilnehmenden nicht zugestimmt wird. Wir informieren unsere Studierenden in diesem Zusammenhang darüber, dass ihre personenbezogenen Daten nur vorübergehend für die Dauer dieser synchronen Veranstaltung gespeichert/verarbeitet werden und dass niemand die Veranstaltung aufzeichnen darf. Wir haben hierfür die Studierenden per per E-Mail informiert. Es gibt in allen Online-Synchronveranstalungen Möglichkeiten einer stummen und nicht sichtbaren Teilnahme. Weitere Datenschutzinformationen sind verfügbar auf https://www.kim.uni-konstanz.de/services/forschen-und-lehren/videokonferenzen/. Da diese Informationen jederzeit durch die Teilnehmenden leicht abrufbar sind, müssen wir nicht explizit darauf hinweisen.