Prof. Dr. Salma Kuhlmann Dr. Itay Kaplan

MODEL THEORY — EXERCISE 8

To be submitted on Wednesday 08.06.2011 by 14:00 in the mailbox.
Definition.

(1) For a set X and a number n < w, let X[™ be the set of subsets of X of size
n.

(2) A graph is a structure G = (V, E) where V is a set of vertices and the
edge relation F is a binary relation which is symmetric (zFy — yEx) and
anti-reflexive (—zEx).

(3) The Finiteness Theorem / The Compactness Theorem: if ¥ is a set of
sentence such that each finite subset of it is consistent (has a model) then
3 has a model.

(4) Let n < w. We say that a graph G is n-colorable, if there exists a function
C :V — n such that if a,b € V and aEb then C (a) # C (b).

(5) A class of L-structures K is called elementary if there exists a set of sen-
tences 3 such that K = Mod (X).

Question 1.

(1) Let L = {<}. Show that the class of well orderings is not elementary.
Solution: Recall that < is a well order iff there is no infinite descending
chain. If there were such a X, then consider ¥ U {c¢;11 < ¢;} where ¢;
are new constants. Then this set is finitely satisfiable (because (N, <) is
always a model with some choice of elements for ¢;), but not satisfiable —
contradiction.

(2) Show that the class of all finite sets (in the signature L ==) is not elemen-
tary.

(3) Let L = {+,-,0,1,<}, and let T = Th(N,+,-,0,1,<). Show that there
exists a model M of T with an element ¢ which is greater than all natural
numbers (i.e. ¢ > 17, (14 1) etc.)

(4) Show that in the model constructed in (3), there is no minimal such c.
Solution: For any ¢, c—1 is well defined (it’s the only x satisfying 41 = ¢),
and c—1 is also bigger than N, because otherwise, if c—1 < k, then ¢ < k+1.

(5) Let T'=Th(R,+,-,0,1,<). Show that there is a model M |= T with an
element 0 < ¢ € M which is infinitesimal: for every positive integer n,

€< (1/ I+...4+ 1)M> where the 1 is summed n-times.

Question 2.

The infinite Ramsey Theorem states as follows: Suppose V is an infinite set and
C : V12 — {0,1}. Then there exists an infinite subset U C V and i € {0,1} such
that C ({x,y}) =i for all ,y € U (in other words, C' | U is constant).

You may think of C' as a coloring function (of pairs from V), and then U is

monochromatic.

The finite Ramsey Theorem states as follows: For all k¥ < w there exists some n < w
1
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such that if |[V| = n, and C : V12 — {0, 1} then there exists some U C V of size k
which is monochromatic.
Remark: this is actually the Ramsey Theorem for coloring of pairs in 2 colors.

(1) Prove the infinite Ramsey theorem.
Solution: Construct a sequence of elements a; € V, sets V; C V and
g; € {0,1} for i < w such that V;11 C V;, a; € V;\V;y1,V; is infinite,
C ({ai,u}) = ¢; for all elements u from V;1;. If we succeed, then there
exists some ig € {0, 1} such that e; = iy for infinitely many ¢ < w, and then
let U = {ai ‘Ei = io}.
Construction: let Vj =V, ag = bg. For some i, and infinitely many b € V,
C ({ag,b}) = ip. Let g9 = ig. Suppose we chose a;,V; and ¢; for i < n
such that everything above holds, and in addition C ({a,,b}) =’ for some
¢ and infinitely many b € V,,. Then let V1 be this infinite set, and let
an+1 be some element from it. For infinitely many b € V,, 11, C ({an+1,b})
is constant, so we can continue.

(2) Deduce the finite Ramsey Theorem from the infinite one using the Com-
pactness Theorem.
Solution: Let k be given. Let A be a set of constants, and let Ly =
AU{C?} where C is a binary relation. Let T4 be the theory axiomatized by
{a #bla#be A}, C is symmetric and anti-reflexive (so an infinite graph),
and for every {ag,...,ar—1} C A, the sentence

\/ (C (aslacsz) N=C (ct170t2))'

s1<s2<k,t1<ta<k

I claim that T4 is consistent iff there is a coloring C' : Al?) — {0, 1} with no
monochromatic set of size k: Given a model M of Ty, define C ({a,b}) =1
iff C™ (a,b). On the other hand, if there is such a coloring C, define M = A
with CM (a,b) iff C ({a,b}) = 1.

Let A be {¢; |i < w}. By the infinite Ramsey, T4 is not consistent, so there
is some n such that if Ag = {¢; |i <n} then Ty, is inconsistent, i.e. every
coloring of ABQ} has a monochromatic subset of size k (and so all sets of size
Remark: there exists a proof that uses only induction on natural numbers.

Question 3.

Show that if G = (V, E) is an infinite graph such that every finite sub graph of it
is m-colorable then G is n-colorable.
Solution: Let L = {c,la €V} U {f} U {do,...,dn_1} where ¢,d are constants
and f is a unary function symbol. Let T be the theory saying that ¢, # ¢ for
a#b, f(x) € {do,...,dn—1} for all z. For all a,b such that aEb, add a sentence
f(ca) # f(cp). Then T has a model iff G is n-colorable. If T is inconsistent, then
some finite subset of it is already inconsistent, i.e. there is some finite V5 C V such
that if Go = (Vp, E | Vp) then Ty, is not consistent. But then Gy is not n-colorable
— contradiction.

Question 4.
Show that the following are equivalent:

(1) The Compactness Theorem.



(2)
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Let T1,T5 be sets of L-sentences. Assume that for every L-structure M,
M is a model of T iff M is not a model of T5. Then there are some finite
21 Q Tl, EQ Q TQ such that 21 = :Zjl7 22 = T2 (1e 21 ': Tl, 22 ’: Tz)
Solution: (1) to (2) The assumption says that T U T5 is inconsistent. So
there is some %7 C Ty, ¥ C T such that ¥ UX, is inconsistent. If M = ¥
then M £ X5, so it cannot be that M = Ts, so M =Ty, i.e. ¥y ET;. For
Yo, Ty it’s the same.

Let T1,T5 be sets of L-sentences. Assume that T is finite and that 77 = Ts.
Then T is finitely axiomatizable (i.e. there is some finite ¥ C T3 such that
Y= Tl)

Solution: (2) to (3): let @« = ATs. Then for every structure M, M is a
model of Ty iff M | « iff M is not a model of ~a. By (1), there is some
finite X1 equivalent to T}.

(3) to (1): Assume that X is a set of sentences with no model. Then 3 =
{L} (where L is always interpreted as false, can be replaced by Va (z # x)).
By (2), there is some finite 3y C 3 which is inconsistent.



