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Definition.

(1) For a set X and a number n < ω, let X [n] be the set of subsets of X of size
n.

(2) A graph is a structure G = (V,E) where V is a set of vertices and the
edge relation E is a binary relation which is symmetric (xEy → yEx) and
anti-reflexive (¬xEx).

(3) The Finiteness Theorem / The Compactness Theorem: if Σ is a set of
sentence such that each finite subset of it is consistent (has a model) then
Σ has a model.

(4) Let n < ω. We say that a graph G is n-colorable, if there exists a function
C : V → n such that if a, b ∈ V and aEb then C (a) 6= C (b).

(5) A class of L-structures K is called elementary if there exists a set of sen-
tences Σ such that K = Mod (Σ).

Question 1.

(1) Let L = {<}. Show that the class of well orderings is not elementary.
Solution: Recall that < is a well order iff there is no infinite descending
chain. If there were such a Σ, then consider Σ ∪ {ci+1 < ci} where ci
are new constants. Then this set is finitely satisfiable (because (N, <) is
always a model with some choice of elements for ci), but not satisfiable –
contradiction.

(2) Show that the class of all finite sets (in the signature L =≈) is not elemen-
tary.

(3) Let L = {+, ·, 0, 1, <}, and let T = Th (N,+, ·, 0, 1, <). Show that there
exists a model M of T with an element c which is greater than all natural
numbers (i.e. c > 1M , (1 + 1)

M etc.)
(4) Show that in the model constructed in (3), there is no minimal such c.

Solution: For any c, c−1 is well defined (it’s the only x satisfying x+1 = c),
and c−1 is also bigger than N, because otherwise, if c−1 < k, then c < k+1.

(5) Let T = Th (R,+, ·, 0, 1, <). Show that there is a model M |= T with an
element 0 < ε ∈ M which is infinitesimal: for every positive integer n,
ε <

(
1/ (1 + . . .+ 1)

M
)
where the 1 is summed n-times.

Question 2.
The infinite Ramsey Theorem states as follows: Suppose V is an infinite set and
C : V [2] → {0, 1}. Then there exists an infinite subset U ⊆ V and i ∈ {0, 1} such
that C ({x, y}) = i for all x, y ∈ U (in other words, C � U is constant).
You may think of C as a coloring function (of pairs from V ), and then U is
monochromatic.
The finite Ramsey Theorem states as follows: For all k < ω there exists some n < ω
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such that if |V | = n, and C : V [2] → {0, 1} then there exists some U ⊆ V of size k
which is monochromatic.
Remark: this is actually the Ramsey Theorem for coloring of pairs in 2 colors.

(1) Prove the infinite Ramsey theorem.
Solution: Construct a sequence of elements ai ∈ V , sets Vi ⊆ V and
εi ∈ {0, 1} for i < ω such that Vi+1 ⊆ Vi, ai ∈ Vi\Vi+1,Vi is infinite,
C ({ai, u}) = εi for all elements u from Vi+1. If we succeed, then there
exists some i0 ∈ {0, 1} such that εi = i0 for infinitely many i < ω, and then
let U = {ai |εi = i0 }.
Construction: let V0 = V , a0 = b0. For some i0, and infinitely many b ∈ V ,
C ({a0, b}) = i0. Let ε0 = i0. Suppose we chose ai, Vi and εi for i ≤ n
such that everything above holds, and in addition C ({an, b}) = i′ for some
i′ and infinitely many b ∈ Vn. Then let Vn+1 be this infinite set, and let
an+1 be some element from it. For infinitely many b ∈ Vn+1, C ({an+1, b})
is constant, so we can continue.

(2) Deduce the finite Ramsey Theorem from the infinite one using the Com-
pactness Theorem.
Solution: Let k be given. Let A be a set of constants, and let LA =
A∪{C} where C is a binary relation. Let TA be the theory axiomatized by
{a 6= b |a 6= b ∈ A}, C is symmetric and anti-reflexive (so an infinite graph),
and for every {a0, . . . , ak−1} ⊆ A, the sentence∨

s1<s2<k,t1<t2<k

(C (as1 , cs2) ∧ ¬C (ct1 , ct2)) .

I claim that TA is consistent iff there is a coloring C : A[2] → {0, 1} with no
monochromatic set of size k: Given a model M of TA, define C ({a, b}) = 1
iff CM (a, b). On the other hand, if there is such a coloring C, defineM = A
with CM (a, b) iff C ({a, b}) = 1.
Let A be {ci |i < ω }. By the infinite Ramsey, TA is not consistent, so there
is some n such that if A0 = {ci |i < n} then TA0

is inconsistent, i.e. every
coloring of A[2]

0 has a monochromatic subset of size k (and so all sets of size
n).
Remark: there exists a proof that uses only induction on natural numbers.

Question 3.
Show that if G = (V,E) is an infinite graph such that every finite sub graph of it
is n-colorable then G is n-colorable.
Solution: Let L = {ca |a ∈ V } ∪ {f} ∪ {d0, . . . , dn−1} where c, d are constants
and f is a unary function symbol. Let T be the theory saying that ca 6= cb for
a 6= b, f (x) ∈ {d0, . . . , dn−1} for all x. For all a, b such that aEb, add a sentence
f (ca) 6= f (cb). Then T has a model iff G is n-colorable. If T is inconsistent, then
some finite subset of it is already inconsistent, i.e. there is some finite V0 ⊆ V such
that if G0 = (V0, E � V0) then TG0 is not consistent. But then G0 is not n-colorable
– contradiction.

Question 4.
Show that the following are equivalent:

(1) The Compactness Theorem.



MODEL THEORY – EXERCISE 8 3

(2) Let T1, T2 be sets of L-sentences. Assume that for every L-structure M ,
M is a model of T1 iff M is not a model of T2. Then there are some finite
Σ1 ⊆ T1, Σ2 ⊆ T2 such that Σ1 ≡ T1, Σ2 ≡ T2 (i.e. Σ1 |= T1, Σ2 |= T2).
Solution: (1) to (2) The assumption says that T1 ∪ T2 is inconsistent. So
there is some Σ1 ⊆ T1,Σ2 ⊆ T2 such that Σ1∪Σ2 is inconsistent. IfM |= Σ1

then M 6|= Σ2, so it cannot be that M |= T2, so M |= T1, i.e. Σ1 |= T1. For
Σ2, T2 it’s the same.

(3) Let T1, T2 be sets of L-sentences. Assume that T2 is finite and that T1 ≡ T2.
Then T1 is finitely axiomatizable (i.e. there is some finite Σ ⊆ T1 such that
Σ ≡ T1).
Solution: (2) to (3): let α =

∧
T2. Then for every structure M , M is a

model of T1 iff M |= α iff M is not a model of ¬α. By (1), there is some
finite Σ1 equivalent to T1.
(3) to (1): Assume that Σ is a set of sentences with no model. Then Σ ≡
{⊥} (where ⊥ is always interpreted as false, can be replaced by ∀x (x 6= x)).
By (2), there is some finite Σ0 ⊆ Σ which is inconsistent.


