Universität Konstanz

Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Martin Gubisch, Oliver Lass
17.09.2013

Summerschool Reduced Basis Methods 2013
Solution Sheet

PART A: POD FOR DYNAMICAL SYSTEMS

POD Galerkin ansatz. Consider the linear parabolic differential equation

$$
M \dot{y}(t)+A y(t)=f(t)+B u(t), \quad M y(0)=y_{\circ}
$$

1. Find a linear and bounded operator $S: U \rightarrow Y$ and $\hat{y} \in Y$ such that $y=S u+\hat{y}$.
2. Complete line 7 and implement the function Rom in the algorithm
```
Algorithm 1 (PodGalerkin)
Require: \(M, A, f, y_{\circ}, B, u, \Delta t, \ell_{\max }\).
    Solve \(\hat{y}=\operatorname{State}\left(M, A, f, y_{\circ}, \Delta t\right)\)
    Solve \(y_{1}=\operatorname{State}(M, A, B u, 0, \Delta t)\) and \(y_{2}=\operatorname{State}\left(M, A, f+B u, y_{\circ}, \Delta t\right)\)
    Solve \(\Psi_{1}=\operatorname{Pod}\left(\Delta t, M, y_{1}, \ell_{\max }\right)\) and \(\Psi_{2}=\operatorname{Pod}\left(\Delta t, M, y_{2}, \ell_{\max }\right)\)
    for \(\ell=1, \ldots, \ell_{\text {max }}\) do
        Determine \(\left[M_{1}^{\ell}, A_{1}^{\ell}, B_{1}^{\ell}\right]=\operatorname{Rom}\left(\Psi_{1}^{\ell}, M, A, B\right)\) and \(\left[M_{2}^{\ell}, A_{2}^{\ell}, B_{2}^{\ell}, f_{2}^{\ell}, y_{\circ 2}^{\ell}\right]=\operatorname{Rom}\left(\Psi_{2}^{\ell}, M, A, B, f, y_{\circ}\right)\)
        Compute \(x_{1}^{\ell}=\operatorname{State}\left(M_{1}^{\ell}, A_{1}^{\ell}, B_{1}^{\ell} u, 0, \Delta t\right)\) and \(x_{2}^{\ell}=\operatorname{State}\left(M_{2}^{\ell}, A_{2}^{\ell}, f_{2}^{\ell}+B_{2}^{\ell} u, y_{\circ 2}^{\ell}, \Delta t\right)\)
        Determine the corresponding high-dimensional states \(y_{1}^{\ell}=\ldots, y_{2}^{\ell}=\ldots\)
        Compute \(e_{1}^{\ell}=\left\|y_{2}-y_{1}^{\ell}\right\|_{Y}\) and \(e_{2}^{\ell}=\left\|y_{2}-y_{2}^{\ell}\right\|_{Y}\)
    end for
```

3. Visualize e_{1}, e_{2} and the first few Pod elements of Ψ_{1}, Ψ_{2}.

Solutions.

1. We consider the homogeneous controlled and the inhomogeneous uncontrolled pdes

$$
M \dot{y}(t)+A y(t)=B u(t) \& M y(0)=0, \quad M \dot{y}(t)+A y(t)=f(t) \& M y(0)=y_{\circ}
$$

then S is the linear, bounded solution operator to the first problem and \hat{y} is the solution to the second one.
2. Let N be the dimension of the high-dimensional system and n be the number of control components, i.e. $M, A \in \mathbb{R}^{N \times N}$ and $B \in \mathbb{R}^{N \times n}$. The function Rom assembles the system matrices of the reduced order model. For this purpose, the high-dimensional pde is transformed onto the space spanned by the POD basis elements which is provided by multiplication from the left with $\left(\Psi^{\ell}\right)^{\mathrm{T}} \in \mathbb{R}^{\ell \times N}$; further, the solution vector $y(t) \in \mathbb{R}^{N}$ is replaced by its expansion in the POD basis, $\sum x_{i}(t) \psi_{i}^{\ell}=\Psi^{\ell} \cdot x(t)$ where $x(t) \in \mathbb{R}^{\ell}$. The reduced pde is

$$
M^{\ell} \dot{x}(t)+A^{\ell} x(t)=f^{\ell}(t)+B^{\ell} u(t), \quad M^{\ell} x(0)=y_{\circ}^{\ell}
$$

where $M^{\ell}, A^{\ell}, B^{\ell}, f^{\ell}, y_{\circ}^{\ell}$ are calculated by the function ROM which is an implementation of

```
Algorithm 2 (ReducedOrderModel)
Require: \(\Psi^{\ell}, M, A, B, f, y_{\circ}, y_{Q}, y_{\Omega}\).
    \(M^{\ell}=\left(\Psi^{\ell}\right)^{\mathrm{T}} M \Psi^{\ell} \in \mathbb{R}^{\ell \times \ell}, A^{\ell}=\left(\Psi^{\ell}\right)^{\mathrm{T}} A \Psi^{\ell} \in \mathbb{R}^{\ell \times \ell}, B^{\ell}=\left(\Psi^{\ell}\right)^{\mathrm{T}} B \in \mathbb{R}^{\ell \times n}\).
    if nargout \(\geq 5\) then
        \(f^{\ell}(t)=\left(\Psi^{\ell}\right)^{\mathrm{T}} f(t) \in \mathbb{R}^{\ell}, y_{\circ}^{\ell}=\left(\Psi^{\ell}\right)^{\mathrm{T}} y_{\circ} \in \mathbb{R}^{\ell}\)
    end if
    if nargout \(\geq 7\) then
        \(y_{Q}^{\ell}(t)=\left(\overline{\Psi^{\ell}}\right)^{\mathrm{T}} y_{Q}(t) \in \mathbb{R}^{\ell}, y_{\Omega}^{\ell}=\left(\Psi^{\ell}\right)^{\mathrm{T}} y_{\Omega} \in \mathbb{R}^{\ell}\).
    end if
```

Notice: The coefficients for y_{Q}, y_{Ω} are required later.
The full solutions $y_{1}^{\ell}(t), y_{2}^{\ell}(t) \in \mathbb{R}^{N}$ are reconstructed by $y_{1}^{\ell}(t)=\Psi_{1}^{\ell} \cdot x_{1}(t)+\hat{y}(t)$ and $y_{2}^{\ell}(t)=\Psi_{2}^{\ell} \cdot x_{2}(t)$.
3. We have a look at the inhomogeneous, controlled state solution $y_{2}=y_{1}+\hat{y}$, at the errors between the highdimensional FE model and the low-dimensional POD model and at the shape of the POD basis elements of the two ansatzes.

Fig. 1: The state solution with discontinuous initialization. As typical for linear parabolic equations, the initial value is smoothend imediately.

Fig. 2: The state errors caused by the model reduction. As one sees, the modified ansatz where just the snapshots of the homogeneous solution component $y_{1}=S u$ are used for the POD basis creation leads to significantly better results than the classical ansatz where the snapshots of $y_{2}=S u+\hat{y}$ generate the POD basis.

Fig. 3: The first POD basis elements ψ_{1}^{l} of the homogeneous ansatz (left) and ψ_{2}^{l} of the inhomogeneous one (right). As one sees, the rows ψ_{2}^{l} of Ψ_{2} include jumps at the positions where y_{\circ} is discontinuous to be able to reconstruct the initial value which is not required for the homogeneous ansatz.

Fig. 4: The reconstruction of the initial value, $\Psi^{\ell} y_{0}^{\ell}$ for different POD basis ranks ℓ with the modified ansatz (left) and the classical one (right). The approximation with the inhomogeneous basis Ψ_{2} works quite well where with Ψ_{1}, it is neither required nor possible to build up y_{\circ} accurately.

Part B: Optimal control of PDEs

Optimization problem. We consider the pde-constrained optimal control problem

$$
\min J(y, u)=\frac{1}{2} \int_{0}^{T}\left\|y(t)-\vec{y}_{Q}(t)\right\|_{H}^{2} \mathrm{~d} t+\frac{1}{2}\left\|y(T)-\vec{y}_{\Omega}\right\|_{H}^{2}+\frac{\sigma}{2}\|u\|_{U}^{2}
$$

subject to

$$
M \dot{y}(t)+A y(t)=f(t)+B u(t) \& M y(0)=y_{\circ}, \quad u_{a}(t) \leq u(t) \leq u_{b}(t)
$$

Optimality system. An optimal control-state pair $(\bar{y}, \bar{u}) \in Y \times U$ is given by

$$
\begin{array}{rlrl}
M \dot{y}(t)+A y(t)-f(t)-B u(t) & =0, & M y(0) & =y_{0}, \\
-M \dot{p}(t)+A p(t)+M y(t)-y_{Q}(t) & =0, & M p(T)+M y(T)-y_{\Omega}, & =0 \\
u(t)-\mathbb{P}\left(\sigma^{-1} B^{\star} p(t)\right) & =0 &
\end{array}
$$

where $\mathbb{P}(u)=\min \left(\max \left(u, u_{a}\right), u_{b}\right)$ is the canonical projection of U onto $\left[u_{a}, u_{b}\right]$ and $y_{Q}(t)=M \vec{y}_{Q}(t), y_{\Omega}=M \vec{y}_{\Omega}$.

Lagrange calculus. The optimality system is derived by differentiating the Lagrange function

$$
L(y, u, p)=\hat{J}(y, u)+\int_{0}^{T}\langle E(y, u)(t), p(t)\rangle_{L^{2}\left(V^{\prime}, V\right.} \mathrm{d} t
$$

with the modified objective functional $\hat{J}: Y \times U \rightarrow \mathbb{R}$ and the constraints operator $E: Y \times U \rightarrow \mathcal{L}^{2}\left(\Theta, \mathbb{R}^{N}\right)$,

$$
\begin{aligned}
\hat{J}(y, u) & =\int_{0}^{T}\left\|y(T)-\left(\vec{y}_{Q}(t)-\hat{y}(t)\right)\right\|_{H}^{2} \mathrm{~d} t+\left\|y(t)-\left(\vec{y}_{\Omega}(t)-\hat{y}(T)\right)\right\|_{H}^{2}+\frac{\sigma}{2}\|u\|_{U}^{2}, \\
E(y, u) & =M \dot{y}(t)+A y(t)-B u(t) .
\end{aligned}
$$

Notice: The resulting variational inequality $\forall \tilde{u} \in\left[u_{a}, u_{b}\right]:\left\langle\sigma u-B^{\star} p, \tilde{u}-u\right\rangle_{U} \geq 0$ is equivalent to $u=\mathbb{P}\left(\sigma^{-1} B^{\star} p\right)$.
4. Find a linear and bounded operator $\tilde{S}: U \rightarrow Y$ and $\hat{p} \in Y$ such that $p=\tilde{S} u+\hat{p}$.
5. Define a selfmapping F on U such that the optimal control \bar{u} is a fixpoint of F.
6. Formulate a condition of the regularisation parameter σ such that the corresponding Banach fixpoint iteration admits a unique solution.

Solutions.

4. Consider the two initial value problems

$$
\begin{array}{lll}
-M \dot{p}(t)+A p(t)=-M S u(t) & \& & M p(T)=-M S u(T) \\
-M \dot{p}(t)+A p(t)=y_{Q}(t)-M \hat{y}(t) & \& & M p(T)=y_{\Omega}-M \hat{y}(T),
\end{array}
$$

then \tilde{S} is the linear, bounded solution operator to the first one and \hat{p} is the solution of the second one.
5. Choose $F(u)=\mathbb{P}\left(\sigma^{-1}\left(B^{\star} \tilde{S} u+B^{\star} \hat{p}\right)\right)$, then (y, u, p) solves the optimality system if and only if $y=S u+\hat{y}$, $p=\tilde{S} u+\hat{p}$ and $F(u)=u$.
6. We show that F is a contraction for suitable σ, i.e. that

$$
\exists C \in(0,1): \forall u, \tilde{u} \in U:\|F(u)-F(\tilde{u})\|_{U} \leq C\|u-\tilde{u}\|_{U}
$$

Since \mathbb{P} is an orthogonal projector on the nonempty, closed, convex set $\left[u_{a}, u_{b}\right], \mathbb{P}$ is Lipschitz continuous of order 1, i.e. $\|\mathbb{P}(u)-\mathbb{P}(\tilde{u})\|_{U} \leq 1 \cdot\|u-\tilde{u}\|_{U}$ for all $u, \tilde{u} \in U$. Further, the operator $B^{\star} \tilde{S}$ is bounded. Hence:

$$
\|F u-F \tilde{u}\|_{U} \leq \sigma^{-1}\left\|B^{\star} \tilde{S}\right\|\|u-\tilde{u}\| .
$$

Choosing $C=\sigma^{-1}\left\|B^{\star} \tilde{S}\right\|$, we get $C \in(0,1)$ for $\sigma>\left\|B^{\star} \tilde{S}\right\|$.

Part C: Reduced order modellung for optimization problems

Optimization algorithm. We provide the following fixpoint strategy:

```
Algorithm 3 (SolverOptimizationProblem)
Require: initial control \(u_{\circ}\), desired exactness \(\varepsilon\), maximal iterations \(k_{\max }\), inhomogeneous component \(B^{\star} \hat{p}\)
    Set \(k=0, u=u\) 。
    repeat
        Compute \(y_{h}=\underset{\sim}{S} u=\operatorname{State}(M, A, B u, 0, \Delta t)\)
        Compute \(p_{h}=\tilde{S} u=\mathrm{fliplr}\left(\operatorname{State}\left(M, A,-\mathrm{fliplr}\left(M y_{h}\right),-M y(T), \Delta t\right)\right)\)
        Evaluate \(u_{+}=\mathbb{P}\left(\sigma^{-1}\left(B^{\star} p_{h}+B^{\star} \hat{p}\right)\right)\)
    until \(\left\|u_{+}-u\right\|_{U}<\varepsilon\) or \(k=k_{\text {max }}\).
    Set \(u=u_{+}\)and \(k=k+1\)
    Return optimal control \(u\).
```

Notice that the adjoint equation can be solved with the forward routine State as well by backwards transformation in time:

$$
M \dot{q}(t)+A q(t)=-M(S u)(T-t) \& M q(0)=-M(S u)(T), \quad p(t)=q(T-t)
$$

7. Design an algorithm which combines the model reduction via POD with the provided optimization strategy.
8. Visualize the errors between the suboptimal controls u^{ℓ} and the optimal control u for $\ell=1, \ldots, 15$.

Solutions.

7. We have to calculate the inhomogeneous component $B^{\star} \hat{p}$, to solve the high-dimensional state equation to build up the snapshot matrix, to construct the reduced order system matrices and to execute the optimizer with the reduced objects as input parameters:
```
Algorithm 4 (ReducedOrderOptimization)
    Calculate \(\hat{y}(t)=\operatorname{State}\left(M, A, f, y_{\circ}, \Delta t\right)\).
    Calculate \(\hat{p}(t)=\mathrm{fliplr}\left(\operatorname{State}\left(M, A, \mathrm{fliplr}\left(y_{Q}-M \hat{y}\right), y_{\Omega}-M \hat{y}(T), \Delta t\right)\right) \in \mathbb{R}^{N}\).
    Construct inhomogeneous component \(\left(B^{\star} \hat{p}\right)(t) \in \mathbb{R}^{n}\).
    Execute optimizer \(\bar{u}(t)=\operatorname{Solver}\left(u_{\circ}, \epsilon, k_{\max }, M, A, B, \Delta t, \sigma, u_{a}, u_{b}, B^{\star} \hat{p}\right) \in \mathbb{R}^{n}\).
    Calculate snapshots \(y(t)=\operatorname{State}\left(M, A, B u_{\circ}, 0, \Delta t\right) \in \mathbb{R}^{N}\).
    Determine a rank- \(\ell_{\max }\) POD basis \(\Psi=\operatorname{Pod}\left(\Delta t, M, y, \ell_{\max }\right) \in \mathbb{R}^{N \times \ell_{\max }}\).
    for \(\ell=1, \ldots, \ell_{\max }\) do
        Assemble reduced order model \(\left[M^{\ell}, A^{\ell}, B^{\ell}\right]=\operatorname{Rom}\left(\Psi^{\ell}, M, A, B\right) \in \mathbb{R}^{\ell \times \ell} \times \mathbb{R}^{\ell \times \ell} \times \mathbb{R}^{\ell \times n}\).
        Execute optimizer \(u^{\ell}(t)=\operatorname{Solver}\left(u_{\circ}, \epsilon, k_{\max }, M^{\ell}, A^{\ell}, B^{\ell}, \Delta t, \sigma, u_{a}, u_{b}, B^{\star} \hat{p}\right) \in \mathbb{R}^{n}\).
        Compute control error \(e(\ell)=\left\|\bar{u}-u^{\ell}\right\|_{U}\).
    end for
```

8. We visualize the optimal control functions \bar{u}_{i} first.

Fig. 5: The control bounds $u_{a}=0.25$ and $u_{b}=0.75$ are active for u_{1}, u_{10} and for the central components.

An efficient decay of the control errors can just be expected if the initial control guess u_{\circ} is already close to the optimal control \bar{u}. If this is not the case, the procedure may by repeated several times to construct a sequence $\left(u_{k}^{\ell}\right)_{k}$ with initialization $u_{\circ 0}^{\ell}=u_{\circ}$ and $u_{\circ k}^{\ell}=u_{k-1}^{\ell}, k=2, \ldots$.

Fig. 6: The control errors with respect to the reduced control solutions u_{1}^{ℓ}, calculated without a basis adaptivity strategy, and u_{2}^{ℓ} where the POD basis is updated once by initialiting the snapshots with u_{1}^{ℓ}. Indeed, the snapshots to u_{1}^{ℓ} already numerically coincide with those to \bar{u}, i.e. a second basis update leads to no improvement in the error decay.

Further information, especially concerning the asymptotic behavior of the errors, decay rates, a priori error bounds and a posteriori error estimators, can be found in the literature.

Literature

[1] Gubisch, M. \& Volkwein, S.: POD reduced-order modelling for PDE constrained optimization. in preparation, 2013.
[2] Hinze, M. \& Rösch, A.: Discretization of Optimal Control Problems. Int. S. Num. Math., vol. 160: pp. 391-430, 2012.
[3] Hinze, M. \& Tröltzsch, F.: Discrete concepts versus error analysis in pde constrained optimization. GAMMMitt., vol. 33, no. 2: pp. 148-162, 2010.
[4] Hinze, M. \& Volkwein, S.: Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl., vol. 39, no. 3: pp. 319-345, 2007.
[5] Kunisch, K. \& Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math., vol. 90, no. 1: pp. 117-148, 2001.
[6] Kunisch, K. \& Volkwein, S.: Optimal snapshot location for computing POD basis functions. ESAIM: M2AN, vol. 44: pp. 509-529, 2010.
[7] Meidner, D. \& Vexler, B.: A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints. SIAM J. Contr. Optim., vol. 47, no. 3: pp. 1301-1329, 2008.
[8] Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications, vol. 112. American Math. Society, Providence, 2010.
[9] Tröltzsch, F. \& Volkwein, S.: POD a-posteriori error estimates for linear-quadratic optimal control problems. Comp. Opt. Appl., vol. 44, no. 1: pp. 83-115, 2009.
[10] Volkwein, S.: Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. Lecture Notes, University of Konstanz, 2012.

