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Part A: POD for dynamical systems

POD Galerkin ansatz. Consider the linear parabolic differential equation

Mẏ(t) +Ay(t) = f(t) +Bu(t), My(0) = y◦.

1. Find a linear and bounded operator S : U → Y and ŷ ∈ Y such that y = Su+ ŷ.

2. Complete line 7 and implement the function Rom in the algorithm

Algorithm 1 (PodGalerkin)
Require: M,A, f, y◦, B, u,∆t, `max.
1: Solve ŷ = State(M,A, f, y◦,∆t)
2: Solve y1 = State(M,A,Bu, 0,∆t) and y2 = State(M,A, f +Bu, y◦,∆t)
3: Solve Ψ1 = Pod(∆t,M, y1, `max) and Ψ2 = Pod(∆t,M, y2, `max)
4: for ` = 1, ..., `max do
5: Determine [M `

1 , A
`
1, B

`
1] = Rom(Ψ`

1,M,A,B) and [M `
2 , A

`
2, B

`
2, f

`
2 , y

`
◦2] = Rom(Ψ`

2,M,A,B, f, y◦)
6: Compute x`1 = State(M `

1 , A
`
1, B

`
1u, 0,∆t) and x`2 = State(M `

2 , A
`
2, f

`
2 +B`

2u, y
`
◦2,∆t)

7: Determine the corresponding high-dimensional states y`1 = ..., y`2 = ...
8: Compute e`1 = ‖y2 − y`1‖Y and e`2 = ‖y2 − y`2‖Y
9: end for

3. Visualize e1, e2 and the first few Pod elements of Ψ1,Ψ2.

Solutions.

1. We consider the homogeneous controlled and the inhomogeneous uncontrolled pdes

Mẏ(t) +Ay(t) = Bu(t) & My(0) = 0, Mẏ(t) +Ay(t) = f(t) & My(0) = y◦,

then S is the linear, bounded solution operator to the first problem and ŷ is the solution to the second one.

2. Let N be the dimension of the high-dimensional system and n be the number of control components, i.e.
M,A ∈ RN×N and B ∈ RN×n. The function Rom assembles the system matrices of the reduced order model.
For this purpose, the high-dimensional pde is transformed onto the space spanned by the POD basis elements
which is provided by multiplication from the left with (Ψ`)T ∈ R`×N ; further, the solution vector y(t) ∈ RN

is replaced by its expansion in the POD basis,
∑
xi(t)ψ

`
i = Ψ` · x(t) where x(t) ∈ R`. The reduced pde is

M `ẋ(t) +A`x(t) = f `(t) +B`u(t), M `x(0) = y`◦

where M `, A`, B`, f `, y`◦ are calculated by the function ROM which is an implementation of

Algorithm 2 (ReducedOrderModel)
Require: Ψ`,M,A,B, f, y◦, yQ, yΩ.
1: M ` = (Ψ`)TMΨ` ∈ R`×`, A` = (Ψ`)TAΨ` ∈ R`×`, B` = (Ψ`)TB ∈ R`×n.
2: if nargout ≥ 5 then
3: f `(t) = (Ψ`)Tf(t) ∈ R`, y`◦ = (Ψ`)Ty◦ ∈ R`

4: end if
5: if nargout ≥ 7 then
6: y`Q(t) = (Ψ`)TyQ(t) ∈ R`, y`Ω = (Ψ`)TyΩ ∈ R`.
7: end if



Notice: The coefficients for yQ, yΩ are required later.

The full solutions y`1(t), y`2(t) ∈ RN are reconstructed by y`1(t) = Ψ`
1 · x1(t) + ŷ(t) and y`2(t) = Ψ`

2 · x2(t).

3. We have a look at the inhomogeneous, controlled state solution y2 = y1 + ŷ, at the errors between the high-
dimensional FE model and the low-dimensional POD model and at the shape of the POD basis elements of
the two ansatzes.

Fig. 1: The state solution with discontinuous initialization. As typical for linear parabolic equations, the initial
value is smoothend imediately.
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Fig. 2: The state errors caused by the model reduction. As one sees, the modified ansatz where just the
snapshots of the homogeneous solution component y1 = Su are used for the POD basis creation leads
to significantly better results than the classical ansatz where the snapshots of y2 = Su+ ŷ generate the
POD basis.
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Fig. 3: The first POD basis elements ψl
1 of the homogeneous ansatz (left) and ψl

2 of the inhomogeneous one
(right). As one sees, the rows ψl

2 of Ψ2 include jumps at the positions where y◦ is discontinuous to be
able to reconstruct the initial value which is not required for the homogeneous ansatz.
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Fig. 4: The reconstruction of the initial value, Ψ`y`0 for different POD basis ranks ` with the modified ansatz
(left) and the classical one (right). The approximation with the inhomogeneous basis Ψ2 works quite
well where with Ψ1, it is neither required nor possible to build up y◦ accurately.

Part B: Optimal control of PDEs

Optimization problem. We consider the pde-constrained optimal control problem

min J(y, u) =
1

2

T∫
0

‖y(t)− ~yQ(t)‖2H dt+
1

2
‖y(T )− ~yΩ‖2H +

σ

2
‖u‖2U

subject to
Mẏ(t) +Ay(t) = f(t) +Bu(t) & My(0) = y◦, ua(t) ≤ u(t) ≤ ub(t).

Optimality system. An optimal control-state pair (ȳ, ū) ∈ Y × U is given by

Mẏ(t) +Ay(t)− f(t)−Bu(t) = 0, My(0) = y◦,

−Mṗ(t) +Ap(t) +My(t)− yQ(t) = 0, Mp(T ) +My(T )− yΩ, = 0

u(t)− P(σ−1B?p(t)) = 0

where P(u) = min(max(u, ua), ub) is the canonical projection of U onto [ua, ub] and yQ(t) = M~yQ(t), yΩ = M~yΩ.



Lagrange calculus. The optimality system is derived by differentiating the Lagrange function

L(y, u, p) = Ĵ(y, u) +

T∫
0

〈E(y, u)(t), p(t)〉L2(V ′,V dt

with the modified objective functional Ĵ : Y × U → R and the constraints operator E : Y × U → L2(Θ,RN ),

Ĵ(y, u) =

T∫
0

‖y(T )− (~yQ(t)− ŷ(t))‖2H dt+ ‖y(t)− (~yΩ(t)− ŷ(T ))‖2H +
σ

2
‖u‖2U ,

E(y, u) = Mẏ(t) +Ay(t)−Bu(t).

Notice: The resulting variational inequality ∀ũ ∈ [ua, ub] : 〈σu−B?p, ũ−u〉U ≥ 0 is equivalent to u = P(σ−1B?p).

4. Find a linear and bounded operator S̃ : U → Y and p̂ ∈ Y such that p = S̃u+ p̂.

5. Define a selfmapping F on U such that the optimal control ū is a fixpoint of F .

6. Formulate a condition of the regularisation parameter σ such that the corresponding Banach fixpoint iteration
admits a unique solution.

Solutions.

4. Consider the two initial value problems

−Mṗ(t) +Ap(t) = −MSu(t) & Mp(T ) = −MSu(T ),

−Mṗ(t) +Ap(t) = yQ(t)−Mŷ(t) & Mp(T ) = yΩ −Mŷ(T ),

then S̃ is the linear, bounded solution operator to the first one and p̂ is the solution of the second one.

5. Choose F (u) = P(σ−1(B?S̃u + B?p̂)), then (y, u, p) solves the optimality system if and only if y = Su + ŷ,
p = S̃u+ p̂ and F (u) = u.

6. We show that F is a contraction for suitable σ, i.e. that

∃C ∈ (0, 1) : ∀u, ũ ∈ U : ‖F (u)− F (ũ)‖U ≤ C‖u− ũ‖U .

Since P is an orthogonal projector on the nonempty, closed, convex set [ua, ub], P is Lipschitz continuous of
order 1, i.e. ‖P(u)− P(ũ)‖U ≤ 1 · ‖u− ũ‖U for all u, ũ ∈ U . Further, the operator B?S̃ is bounded. Hence:

‖Fu− Fũ‖U ≤ σ−1‖B?S̃‖ ‖u− ũ‖.

Choosing C = σ−1‖B?S̃‖, we get C ∈ (0, 1) for σ > ‖B?S̃‖.

Part C: Reduced order modellung for optimization problems

Optimization algorithm. We provide the following fixpoint strategy:

Algorithm 3 (SolverOptimizationProblem)
Require: initial control u◦, desired exactness ε, maximal iterations kmax, inhomogeneous component B?p̂
1: Set k = 0, u = u◦
2: repeat
3: Compute yh = Su = State(M,A,Bu, 0,∆t)
4: Compute ph = S̃u = fliplr(State(M,A,−fliplr(Myh),−My(T ),∆t))
5: Evaluate u+ = P(σ−1(B?ph +B?p̂))
6: until ‖u+ − u‖U < ε or k = kmax.
7: Set u = u+ and k = k + 1
8: Return optimal control u.



Notice that the adjoint equation can be solved with the forward routine State as well by backwards transfor-
mation in time:

Mq̇(t) +Aq(t) = −M(Su)(T − t) & Mq(0) = −M(Su)(T ), p(t) = q(T − t).

7. Design an algorithm which combines the model reduction via POD with the provided optimization strategy.

8. Visualize the errors between the suboptimal controls u` and the optimal control u for ` = 1, ..., 15.

Solutions.

7. We have to calculate the inhomogeneous component B?p̂, to solve the high-dimensional state equation to
build up the snapshot matrix, to construct the reduced order system matrices and to execute the optimizer
with the reduced objects as input parameters:

Algorithm 4 (ReducedOrderOptimization)
1: Calculate ŷ(t) = State(M,A, f, y◦,∆t).
2: Calculate p̂(t) = fliplr(State(M,A, fliplr(yQ −Mŷ), yΩ −Mŷ(T ),∆t)) ∈ RN .
3: Construct inhomogeneous component (B?p̂)(t) ∈ Rn.
4: Execute optimizer ū(t) = Solver(u◦, ε, kmax,M,A,B,∆t, σ, ua, ub, B

?p̂) ∈ Rn.
5: Calculate snapshots y(t) = State(M,A,Bu◦, 0,∆t) ∈ RN .
6: Determine a rank-`max POD basis Ψ = Pod(∆t,M, y, `max) ∈ RN×`max .
7: for ` = 1, ..., `max do
8: Assemble reduced order model [M `, A`, B`] = Rom(Ψ`,M,A,B) ∈ R`×` × R`×` × R`×n.
9: Execute optimizer u`(t) = Solver(u◦, ε, kmax,M

`, A`, B`,∆t, σ, ua, ub, B
?p̂) ∈ Rn.

10: Compute control error e(`) = ‖ū− u`‖U .
11: end for

8. We visualize the optimal control functions ūi first.
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Fig. 5: The control bounds ua = 0.25 and ub = 0.75 are active for u1, u10 and for the central components.

An efficient decay of the control errors can just be expected if the initial control guess u◦ is already close to
the optimal control ū. If this is not the case, the procedure may by repeated several times to construct a
sequence (u`k)k with initialization u`◦0 = u◦ and u`◦k = u`k−1, k = 2, ....
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Fig. 6: The control errors with respect to the reduced control solutions u`1, calculated without a basis adaptivity
strategy, and u`2 where the POD basis is updated once by initialiting the snapshots with u`1. Indeed,
the snapshots to u`1 already numerically coincide with those to ū, i.e. a second basis update leads to no
improvement in the error decay.

Further information, especially concerning the asymptotic behavior of the errors, decay rates, a priori error
bounds and a posteriori error estimators, can be found in the literature.
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