Fachbereich Mathematik und Statistik Dr. E. Luik N. Hermann

Mathematik I

für die Studiengänge Chemie, Life Science und Nanoscience Blatt 4

Aufgabe 13: (schriftlich)

Gegeben seien die Vektoren
$$\vec{a} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} -1 \\ 0 \\ -2 \end{pmatrix}$ und $\vec{c}_{\lambda} = \begin{pmatrix} 0 \\ 1 \\ \lambda \end{pmatrix}$ mit $\lambda \in \mathbb{R}$.

- a) Für welche $\lambda \in \mathbb{R}$ bilden die Vektoren $\vec{a}, \vec{b}, \vec{c}_{\lambda}$ eine Basis des \mathbb{R}^3 ?
- **b)** Für welche $\lambda \in \mathbb{R}$ gilt $\vec{a} \times \vec{c}_{\lambda} = \vec{b}$?
- c) Bestimmen Sie die Koordinatendarstellung von $\vec{d} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ bzgl. der Basis $\mathcal{B} = \{\vec{a}, \vec{b}, \vec{c}_1\}$.
- d) Welchen Abstand hat der Vektor \vec{b} von der Geraden $G = \text{span}\{\vec{a}\}$?

Aufgabe 14: (schriftlich)

Gegeben seien die drei Vektoren

$$\vec{a} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \vec{b} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \vec{c} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$$

- a) Berechnen Sie $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{a}$, $\vec{a} \times (\vec{b} \times \vec{c})$ und $(\vec{a} \times \vec{b}) \times \vec{c}$.
- b) Berechnen Sie $\det(\vec{a}, \vec{b}, \vec{c})$ und beantworten Sie folgende Fragen:
 - (1) Sind die Vektoren linear unabhängig?
 - (2) Welches Volumen hat der aufgespannte Spat?
 - (3) Welche Orientierung haben die Vektoren $\vec{a}, \vec{b}, \vec{c}$?

bitte wenden

Aufgabe 15: (mündlich)

Gegeben seien die Vektoren

$$\vec{a} = \begin{pmatrix} 2\\1\\2 \end{pmatrix}, \vec{b} = \begin{pmatrix} 0\\1\\-5 \end{pmatrix}.$$

- (1) Bestimmen Sie eine ONB von $E = \text{span}\{\vec{a}, \vec{b}\}.$
- (2) Finden Sie einen Vektor $\vec{c} \in \mathbb{R}^3$, so dass \vec{a} , \vec{b} , \vec{c} (in dieser Reihenfolge) ein Linkssystem bilden.

Aufgabe 16: (mündlich)

- a) Bestimmen Sie den Umfang und den Flächeninhalt des Vierecks mit den Ecken A(1|1), B(2|3), C(5|-1), D(1|-1).
- **b)** Berechnen Sie das (absolute) Volumen des Tetraeders (= dreiseitige Pyramide) mit den Ecken A(1|1|1), B(3|2|5), C(2|4|4) und D(1|1|-1).

Besprechung: ab 19. November 2018 in den Übungen.