Exercises for
 Theory and Numerics of Partial Differential Equations

http://www.math.uni-konstanz.de/numerik/personen/mechelli/teaching.html

Exercise Sheet 10

Submission ${ }^{1}: 25^{\text {th }}$ January at 10:00

Exercise 1. (Theory, 10 points)
Consider the following problem:

$$
\left\{\begin{array}{cl}
-\lambda \Delta u+c u=f & \text { in } \Omega \tag{1}\\
\lambda \frac{\partial u}{\partial n}+\alpha u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

with $\Omega \subset \mathbb{R}^{d}$ bounded, $f \in L^{2}(\Omega), \alpha \geq 0$, and $\lambda, c>0$. Prove that:

1. Exists a unique weak solution $u \in H^{2}(\Omega)$ of (1).
2. Given $\left\{\Phi_{1}, \ldots, \Phi_{N}\right\}$ a base of $X_{h} \subset H^{1}(\Omega)$, the matrix of the equivalent linear equations' system is symmetric and positive definite.
(Hint: For 1. consider the Lax-Milgram Theorem.)
Exercise 2. (Programming, 10 points)
Consider the following problem:

$$
\left\{\begin{array}{cl}
-\lambda \Delta u+c u=f & \text { in } \Omega=[0,1] \times[0,1] \tag{2}\\
\frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

with $f \in L^{2}(\Omega)$ and $\lambda, c>0$. In main_10_2:

1. Generate a grid ${ }^{2}\left[x_{0}, \ldots, x_{N}\right] \times\left[y_{0}, \ldots, y_{M}\right]$ with $N, M \in \mathbb{N}$,
2. Solve (2) numerically with finite differences for the following f :
(a) $f_{1}(x, y)=1$
(b) $f_{2}(x, y)=-6 y^{2}(2 y-3)(2 x-1)-6 x^{2}(2 x-3)(2 y-1)+x^{2}(2 x-3) y^{2}(2 y-3)$
(c) $f_{3}(x, y)=\left(8 \pi^{2}+1\right) \cos (2 \pi x) \cos (2 \pi y)$
for all $(x, y) \in \Omega$,
3. Plot the solutions.
[^0]
[^0]: ${ }^{1}$ The Theory Exercises will be collected at the begin of the lecture. The Programming Exercises have to be sent by email to luca.mechelli@uni-konstanz.de (group of Tuesday) and to hai.nguyen-pham@uni-konstanz.de (group of Wednesday) before the submission's deadline.
 ${ }^{2}$ Consider the fact that the discretization step $d x$ may be different from $d y$.

