Fachbereich
Mathematik und Statistik
Universität
Konstanz
  Logo der Universität Konstanz
Schwerpunkt Reelle Geometrie und Algebra > Vorträge


Vorträge im Schwerpunkt Reelle Geometrie und Algebra

Donnerstag, 24. Juni 2010, um 17:00 Uhr in F426 (Schwerpunktskolloquium)
Marcello Mamino (Scuola Normale Superiore di Pisa)
On the topology of definably compact groups definable in o-minimal structures
 

O-minimal structures are a class of totally ordered first order structures which generalize semialgebraic and subanalytic geometries. It has been proven by Pillay in '88 that a group definable in an o-minimal structure admits a unique definable manifold structure which makes it into a topological group. Definable groups, hence, generalize semialgebraic and Lie groups (in particular semialgebraic groups and compact Lie groups are definable in suitable o-minimal structures). We will speak about definable topological properties of definably compact groups definable in o-minimal structures and their connections with Lie groups.

zuletzt geändert am 22. Juni 2010