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These exercises will be collected Tuesday 15th June in the mailbox n.14 of the
Mathematics department.

1. Let E/F be a field extension. Show that

(i) S C FE is algebraically independent over F' if and only if
Vs €S : s is transcendental over F(S \{s}).

(#1) S C E is a transcendence base for F/F' if and only if S is algebraically
independent over F' and E is algebraic over F(S).

We recall that a ring is said to be local if it contains exactly one maximal ideal.

2. We denote by R[[x]] the ring of formal power series with coefficients in R.
(¢) Show that R[[x]] is a local ring.
(i1) Let f € R[[x]],

f=7fc+ foer + ...

where every f; is homogeneous of degree i, fr # 0. Assume that f is
sos in R[[x]]. Show that k is even and f is a sum of squares of forms
of degree k/2.

3. Consider K = [-1,1] C R. Note that K = Kg = Kg/, where 5,5 C R[x],
S={1-x1+x}and ' = {1 —x?}.

(a) Show that T is saturated.

(b) Show that T is saturated as well.



4. Let A be a commutative ring with 1 and let x := Hom(4,R) =
{a: A — R | a is a ring homomorphism}. Define the map

Hom(A,R) — Sper A
a — P,:=a Y(R?").
Show that
(¢) the map is well-defined, i.e. P, C A is an ordering;
(#9) it is injective, i.e. a # B3 = P, # Pg;
(#i1) support(P,) = ker « ;
(iv) for every a € A define a: x — R by d(a) = a(a) and U(a) := {a €
X | a(a) > 0}; then B={U(a) | a € A} is a pre-base for a topology
T on x;

(v) for every a € A the map G: x — R is continuous with the respect to
the topology T;

(vi) if 7y is another topology on x such that a is continuous for every a € A,
then U(a) € 7 for every a;

(vii) the spectral topology on Sper A induces (by the map above x —
Sper A) a topology on x which agrees to 7.

5. Let A be a commutative ring with 1 containing Q. Let T be a generating
preprime and M a maximal proper T-module. Suppose M is Archimedean.
Define the map

a:A — R
a +— inf{reQ:r—aeM}.

Show that « is a ring homomorphism.



