Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Annalisa Conversano SS2010

ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 07

These exercises will be collected Tuesday 22th June in the mailbox n.14 of the Mathematics department.

Let $\underline{\mathbf{x}} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$.

1. Let $L \colon \mathbb{R}[\underline{\mathbf{x}}] \to \mathbb{R}$ be a linear functional, $g \in \mathbb{R}[\underline{\mathbf{x}}]$, $\langle \, , \rangle_g \colon \mathbb{R}[\underline{\mathbf{x}}] \times \mathbb{R}[\underline{\mathbf{x}}] \to \mathbb{R}$ the symmetric bilinear form defined by $\langle h \, , k \rangle_g := L(hkg)$ and S_g the symmetric matrix with $\alpha\beta$ entry $\langle \, \underline{\mathbf{x}}^{\alpha}, \underline{\mathbf{x}}^{\beta} \, \rangle_g$ for all $\alpha, \beta \in (\mathbb{Z}_+)^n$.

Show that the following are equivalent:

- (i) $L(\sigma g) \ge 0$ for all $\sigma \in \sum \mathbb{R}[\underline{\mathbf{x}}]^2$.
- $(ii) \ L(h^2g)\geqslant 0 \text{ for all } h\in\mathbb{R}[\underline{\mathbf{x}}].$
- (iii) \langle , \rangle_g is PSD.
- (iv) S_g is PSD.
- **2**.(a) Suppose n = 1. Let $L: \mathbb{R}[x] \to \mathbb{R}$ be a linear functional such that

$$L(\mathbf{x}^m) = 0$$
 for $m = 2$ and $\forall m \ge 4$.

Give necessary and sufficient conditions so that there is a Borel measure μ on $\mathbb R$ such that

$$L(f) = \int_{\mathbb{R}} f d\mu \qquad \forall \, f \in \mathbb{R}[\mathbf{x}].$$

(b) For $x \in \mathbb{R}$, let $L_x \colon \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ be the evaluation on x, i.e. $L_x(f) = f(x)$ for all $f \in \mathbb{R}[\mathbf{x}]$. For which $x \in \mathbb{R}$ and $K \subseteq \mathbb{R}$ closed there is Borel measure μ on K such that

$$L_x(f) = \int_K f d\mu \quad \forall f \in \mathbb{R}[x]?$$

3. Let $L: \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ be a linear functional and set $L(\mathbf{x}^i) := s_i$ for every $i \in \mathbb{Z}_+$. Show that there is a Borel measure μ on $K = [0,1] \subset \mathbb{R}$ such that

$$L(f) = \int_{K} f d\mu \qquad \forall f \in \mathbb{R}[\mathbf{x}]$$

if and only if the following symmetric matrices are PSD:

$$\begin{pmatrix} s_0 & s_1 & s_2 & \dots \\ s_1 & s_2 & \dots & \dots \\ s_2 & \dots & \dots & \dots \\ \vdots & & & & & & \\ \begin{pmatrix} s_1 & s_2 & s_3 & \dots \\ s_2 & s_3 & \dots & \dots \\ s_3 & \dots & \dots & \dots \\ s_3 & \dots & \dots & \dots \\ \vdots & & & & & \\ \end{pmatrix}$$

$$\begin{pmatrix} s_0 - s_1 & s_1 - s_2 & s_2 - s_3 & \dots \\ s_1 - s_2 & s_2 - s_3 & \dots & \dots \\ s_2 - s_3 & \dots & \dots & \dots \\ \vdots & & & & & \\ \vdots & & & & & \\ \end{pmatrix}$$

4. We recall that there is a natural bijection

$$\begin{split} \{L\colon \mathbb{R}[\underline{\mathbf{x}}] &\to \mathbb{R} \text{ linear functional}\} &\leftrightarrow \{\tau\colon (\mathbb{Z}_+)^n \to \mathbb{R}\} \\ \text{given by} & L(\underline{\mathbf{x}}^\alpha) = \tau(\alpha) \qquad \forall \, \alpha \in (\mathbb{Z}_+)^n. \end{split}$$
 Let
$$\Sigma := \sum \mathbb{R}[\underline{\mathbf{x}}]^2,$$

$$\mathcal{P} := \{ f \in \mathbb{R}[\underline{\mathbf{x}}] \mid f(\underline{x}) \geqslant 0 \ \forall \, \underline{x} \in \mathbb{R}^n \}.$$

Describe Σ^{\vee} and \mathcal{P}^{\vee} in terms of conditions on multisequences.