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Notation 1. Let (X, 7) be a topological space and A C X a subset. We denote
by 71, the topology induced on A by 7, namely

Uerm, <d:ef> IV erwithU NnA="U.

Notation 2. Let (X,7!), (Y,72) be topological spaces. We denote by 7! x 72
the product topology of 7! and 72 on X x Y (we recall that

B:{U1XU2‘U1€T1,UQE7'2}

is a basis for 71 x 72 ).

1. Let (X, 71), (Y, 72) be topological spaces and A C X, B C Y subsets. Show
that

1, .2 1 2

(77 x77) =T, X T

|axB A

namely that the topology induced on A x B by the product topology 7! x 72

on X x Y coincides with the product of the induced topologies on A and
on B.

2. Let K be a topological field, V' a K-topological vector space and W C V
be a finite-dimensional subspace.
Show that W is a K-topological vector space with the induced topology
from V.



Let (X, M, ) be a measure space, namely

e X is a set,

e M is a g-algebra in X (the elements in M are the measurable sets),

o 1 M — [0,00] is a countable additive map (where [0, oo] stands for

We recall that a function f: X — [0, 0] is measurable if f~1(U) € M
for every U C [0, 0c] open, where a basis for the topology on [0, o] is given

by {[0.0)|a € Ry} U{(a,b) | a,b € Ry} U{(a,00] | a € Ru}.

x4 denotes the characteristic function of the set A and a measurable
function s: X — [0, o0] is simple if it is of the form

n
s = § Qi X A;
=1

for some a; € R and measurable sets A; € M.
For every E € M and every measurable simple function s as above, we

define .
/ sd,uzz:aiu(AiﬂE).
E i=1

If f: X — [0,00] is measurable and E € M, we define

/ fdu:sup/ sdp,
E E

where s ranges over all measurable simple functions such that 0 < s < f.

. Let {f,}nen be a sequence of measurable functions on X, such that
— 0< fa(z) < fryi1(x) for every n € N and every = € X;
— lim,— o fn(z) = f(x) for every z € X.

Show that:

(1) f is measurable;

(i)

lim fndu = / fdu.
X b's

n—oo

Hints: 0< f <g= [y fdu< [y gdp.
Let s be a simple measurable function such that 0 < s < f and c a
constant 0 < ¢ < 1, and define E,, = {z € X | fu(z) > cs(z)} Vn € N.

Observe that
/ fndu > c/ sdp
X

and use it to conclude that

lim fndu>/ fdp.
X X

n—oo



