REAL ALGEBRAIC GEOMETRY LECTURE NOTES (01: 20/10/09)

SALMA KUHLMANN

Contents

1. Orderings1
2. Ordered fields 2
3. Archimedean fields 3

Convention: When a new definition is given, the German name appears between brackets.

1. Orderings

Definition 1.1. (partielle Anordnung) Let Γ be a non-empty set and let \leqslant be a relation on Γ such that:
(i) $\gamma \leqslant \gamma \quad \forall \gamma \in \Gamma$,
(ii) $\gamma_{1} \leqslant \gamma_{2}, \gamma_{2} \leqslant \gamma_{1} \Rightarrow \gamma_{1}=\gamma_{2} \quad \forall \gamma_{1}, \gamma_{2} \in \Gamma$,
(iii) $\gamma_{1} \leqslant \gamma_{2}, \gamma_{2} \leqslant \gamma_{3} \Rightarrow \gamma_{1} \leqslant \gamma_{3} \quad \forall \gamma_{1}, \gamma_{2}, \gamma_{3} \in \Gamma$.

Then \leqslant is a partial order on Γ and (Γ, \leqslant) is said to be a partially ordered set.

Example 1.2. Let X be a non-empty set. For every $A, B \subseteq X$, the relation

$$
A \leqslant B \quad \Longleftrightarrow \quad A \subseteq B
$$

is a partial order on the power set $\mathcal{P}(X)=\{A: A \subseteq X\}$.
Definition 1.3. (totale Anordung) A partial order \leqslant on a set Γ is said to be total if

$$
\forall \gamma_{1}, \gamma_{2} \in \Gamma \quad \gamma_{1} \leqslant \gamma_{2} \text { or } \gamma_{2} \leqslant \gamma_{1} .
$$

Notation 1.4. If (Γ, \leqslant) is a partially ordered set and $\gamma_{1}, \gamma_{2} \in \Gamma$, then we write:

$$
\begin{aligned}
& \gamma_{1}<\gamma_{2} \Leftrightarrow \gamma_{1} \leqslant \gamma_{2} \text { and } \gamma_{1} \neq \gamma_{2}, \\
& \gamma_{1} \geqslant \gamma_{2} \Leftrightarrow \gamma_{2} \leqslant \gamma_{1}, \\
& \gamma_{1}>\gamma_{2} \Leftrightarrow \gamma_{2} \leqslant \gamma_{1} \text { and } \gamma_{1} \neq \gamma_{2} .
\end{aligned}
$$

Examples 1.5. Let $\Gamma=\mathbb{R} \times \mathbb{R}=\{(a, b): a, b \in \mathbb{R}\}$.
(1) For every $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathbb{R} \times \mathbb{R}$ we can define

$$
\left(a_{1}, b_{1}\right) \leqslant\left(a_{2}, b_{2}\right) \quad \Longleftrightarrow \quad a_{1} \leqslant a_{2} \text { and } b_{1} \leqslant b_{2} .
$$

Then $(\mathbb{R} \times \mathbb{R}, \leqslant)$ is a partially ordered set.
(2) For every $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathbb{R} \times \mathbb{R}$ we can define $\left(a_{1}, b_{1}\right) \leqslant l\left(a_{2}, b_{2}\right) \Longleftrightarrow\left[a_{1}<a_{2}\right]$ or $\left[a_{1}=a_{2}\right.$ and $\left.b_{1} \leqslant b_{2}\right]$.

Then $\left(\mathbb{R} \times \mathbb{R}, \leqslant_{l}\right)$ is a totally ordered set. (Remark: the "l" stands for "lexicographic").

2. Ordered fields

Definition 2.1. (angeordneter Körper) Let K be a field. Let \leqslant be a total order on K such that:
(i) $x \leqslant y \Rightarrow x+z \leqslant y+z \quad \forall x, y, z \in K$,
(ii) $0 \leqslant x, 0 \leqslant y \Rightarrow 0 \leqslant x y \quad \forall x, y \in K$.

Then the pair (K, \leqslant) is said to be an ordered field.
Examples 2.2. The field of the rational numbers (\mathbb{Q}, \leqslant) and the field of the real numbers (\mathbb{R}, \leqslant) are ordered fields, where \leqslant denotes the usual order.
Definition 2.3. (formal reell Körper) A field K is said to be (formal) real if there is an order \leqslant on K such that (K, \leqslant) is an ordered field.

Proposition 2.4. Let (K, \leqslant) be an ordered field. The following hold:

- $a \leqslant b \Leftrightarrow 0 \leqslant b-a \quad \forall a, b \in K$
- $0 \leqslant a^{2} \quad \forall a \in K$
- $a \leqslant b, 0 \leqslant c \Rightarrow a c \leqslant b c \quad \forall a, b, c \in K$
- $0<a \leqslant b \Rightarrow 0<1 / b \leqslant 1 / a \quad \forall a, b \in K$
- $0 \leqslant n \quad \forall n \in \mathbb{N}$

Remark 2.5. If K is a real field then $\operatorname{char}(K)=0$ and K contains a copy of \mathbb{Q}.
Notation 2.6. Let (K, \leqslant) be an ordered field and let $a \in K$.

$$
\operatorname{sign}(a):=\left\{\begin{aligned}
1 & \text { if } a>0 \\
0 & \text { if } a=0 \\
-1 & \text { if } a<0
\end{aligned}\right.
$$

$$
|a|:=\operatorname{sign}(a) a
$$

Fact 2.7. Let (K, \leqslant) be an ordered field and let $a, b \in K$. Then
$(i) \operatorname{sign}(a b)=\operatorname{sign}(a) \operatorname{sign}(b)$,
(ii) $|a b|=|a||b|$,
(iii) $|a+b| \leqslant|a|+|b|$.

3. ARCHIMEDEAN FIELDS

Definition 3.1. (archimedischer Körper) Let (K, \leqslant) be a field. We say that K is Archimedean if

$$
\forall a \in K \exists n \in \mathbb{N} \text { such that } a<n
$$

Definition 3.2. Let $(\Gamma \leqslant)$ be an ordered set and let $\Delta \subseteq \Gamma$. Then

- Δ is cofinal (kofinal) in Γ if

$$
\forall \gamma \in \Gamma \exists \delta \in \Delta \text { such that } \gamma \leqslant \delta
$$

- Δ is coinitial (koinitial) in Γ if

$$
\forall \gamma \in \Gamma \exists \delta \in \Delta \text { such that } \delta \leqslant \gamma
$$

- Δ is coterminal (koterminal) in Γ if Δ is cofinal and coinitial in Γ.

Example 3.3. Let $(K \leqslant)$ be an Archimedean field. Then \mathbb{N} is cofinal in K, $-\mathbb{N}$ is coinitial in K and $\mathbb{Z}=-\mathbb{N} \cup \mathbb{N}$ is coterminal in K.

Remark 3.4.

- If (K, \leqslant) is an Archimedean field and $Q \subseteq K$ is a subfield, then (Q, \leqslant) is an Archimedean field.
- (\mathbb{R}, \leqslant) is an Archimedean field and therefore also (\mathbb{Q}, \leqslant) is.

Remark 3.5. Let (K, \leqslant) be an ordered field. Then K is Archimedean if and only if $\forall a, b \in K^{*} \exists n \in \mathbb{N}$ such that

$$
|a| \leqslant n|b| \text { and }|b| \leqslant n|a|
$$

Example 3.6. Let $\mathbb{R}[x]$ be the ring of the polynomials with coefficients in \mathbb{R}. We denote by $f f(\mathbb{R}[\mathrm{x}])$ the field of the rational functions of $\mathbb{R}[\mathrm{x}]$, i.e.

$$
f f(\mathbb{R}[\mathrm{x}])=\mathbb{R}(\mathrm{x}):=\left\{\frac{f(\mathrm{x})}{g(\mathrm{x})}: f(\mathrm{x}), g(\mathrm{x}) \in \mathbb{R}[\mathrm{x}] \text { and } g(\mathrm{x}) \neq 0\right\}
$$

Let $f(\mathrm{x})=a_{n} \mathrm{x}^{n}+a_{n-1} \mathrm{x}^{n-1}+\cdots+a_{1} \mathrm{x}+a_{0} \in \mathbb{R}[\mathrm{x}]$ and let $k \in \mathbb{N}$ the smallest index such that $a_{k} \neq 0$ (and therefore actually $f(\mathrm{x})=a_{n} \mathrm{x}^{n}+\cdots+a_{k} \mathrm{x}^{k}$). We define

$$
f(\mathrm{x})>0 \Leftrightarrow a_{k}>0
$$

and then for every $f(\mathrm{x}), g(\mathrm{x}) \in \mathbb{R}[\mathrm{x}]$ with $g(\mathrm{x}) \neq 0$ we define

$$
\frac{f(\mathrm{x})}{g(\mathrm{x})} \geqslant 0 \Leftrightarrow f(\mathrm{x}) g(\mathrm{x}) \geqslant 0
$$

This is a total order on $K=f f(\mathbb{R}[\mathrm{x}])$ which makes (K, \leqslant) an ordered field. We claim that (K, \leqslant) contains
(i) an infinite positive element, i.e.

$$
\exists A \in K \text { such that } A>n \quad \forall n \in \mathbb{N} \text {, }
$$

(ii) an infinitesimal positive element, i.e.

$$
\exists a \in K \text { such that } 0<a<1 / n \quad \forall n \in \mathbb{N} \text {. }
$$

For instance the element $\mathrm{x} \in K$ is infinitesimal and the element $1 / \mathrm{x} \in K$ is infinite. Therefore (K, \leqslant) is not Archimedean.

