REAL ALGEBRAIC GEOMETRY LECTURE NOTES (04: 29/10/09)

SALMA KUHLMANN

Contents

1. Ordering extensions 1
2. Quadratic extensions 1
3. Odd degree field extensions 2
4. Real closed fields 3

1. Ordering extensions

Definition 1.1. Let L / K be a field extension and P an ordering on K.
An ordering Q of L is said to be an extension (Fortsetzung) of P if $P \subset Q$ (equivalently $Q \cap K=P$).

Definition 1.2. Let L / K be a field extension and P an ordering on K. We define

$$
T_{L}(P):=\left\{\sum_{i=1}^{n} p_{i} y_{i}^{2}: n \in \mathbb{N}, p_{i} \in P, y_{i} \in L\right\} .
$$

Remark 1.3. Let L / K be a field extension and P an ordering on K.
Then $T_{L}(P)$ is the smallest preordering of L containing P.
Corollary 1.4. Let L / K be a field extension and P an ordering on K.
Then P has an extension to an ordering Q of L if and only if $T_{L}(P)$ is a proper preordering (i.e. if and only if $-1 \notin T_{L}(P)$).

2. Quadratic extensions

Theorem 2.1. Let K be a field, $a \in K$ and define $L:=K(\sqrt{a})$. Then an ordering P of K extends to an ordering Q of L if and only if $a \in P$.

Proof.
(\Rightarrow) Assume Q is an extension of P, then $a=(\sqrt{a})^{2} \in Q \cap K=P$.
(\Leftarrow) Let $a \in P$ (without loss of generality we can assume $L \neq K$ and $\sqrt{a} \notin K)$. We show that $T_{L}(P)$ is a proper preordering (and then the thesis follows by Corollary 1.4).

If not, there is $n \in \mathbb{N}$ and there are $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in K$, $p_{1}, \ldots, p_{n} \in P$ such that

$$
\begin{aligned}
-1 & =\sum_{i=1}^{n} p_{i}\left(x_{i}+y_{i} \sqrt{a}\right)^{2} \\
& =\sum_{i=1}^{n} p_{i}\left(x_{i}^{2}+a y_{i}^{2}+2 x_{i} y_{i} \sqrt{a}\right) .
\end{aligned}
$$

On the other hand $-1 \in K$, and since every $x \in K(\sqrt{a})$ can be written in a unique way as $x=k_{1}+k_{2} \sqrt{a}$ with $k_{1}, k_{2} \in K$, it follows that

$$
-1=\sum_{i=1}^{n} p_{i}\left(x_{i}^{2}+a y_{i}^{2}\right) \in P
$$

contradiction.

3. Odd DEGREE FIELD EXTENSIONS

Theorem 3.1. Let L / K be a field extension such that $[L: K]$ is finite and odd. Then every ordering of K extends to an ordering of L.

Proof. Otherwise, let $n \in \mathbb{N}$ the minimal odd degree of a field extension for which the theorem fails.

Let L / K be a finite field extension such that $[L: K]=n$ and let P be an ordering of K not extending to an ordering of L.

Since $\operatorname{char}(K)=0$ Primitive Element Theorem applies and there is some $\alpha \in L \backslash K$ such that

$$
L=K(\alpha) \cong K[\mathrm{x}] /(f)
$$

where f is the minimal polynomial of α over K. Therefore $\operatorname{deg}(f)=n$, $f(\alpha)=0$ and for every $g(\mathrm{x}) \in K[\mathrm{x}]$ such that $\operatorname{deg}(g)<n$, we have $g(\alpha) \neq 0$.

By Corollary 1.4, $-1 \in T_{L}(P)$, so

$$
1+\sum_{i=1}^{s} p_{i} y_{i}^{2}=0
$$

where $\forall i=1, \ldots, s \quad p_{i} \in P, p_{i} \neq 0, y_{i} \in L, y_{i} \neq 0$. Define

$$
y_{i}=g_{i}(\alpha)
$$

where $\forall i=1, \ldots, s \quad 0 \neq g_{i}(\mathrm{x}) \in K[\mathrm{x}]$ and $\operatorname{deg}(g)<n$. Since

$$
1+\sum_{i=1}^{s} p_{i} g_{i}(\alpha)^{2}=0
$$

it follows that

$$
1+\sum_{i=1}^{s} p_{i} g_{i}(\mathrm{x})^{2}=f(\mathrm{x}) h(\mathrm{x}), \quad h(\mathrm{x}) \in K[\mathrm{x}]
$$

Define $d:=\max \left\{\operatorname{deg}\left(g_{i}\right): i=1, \ldots, s\right\}$. Then $d<n$ and the polynomial $f(\mathrm{x}) h(\mathrm{x})$ has degree $2 d$. The coefficient of $\mathrm{x}^{2 d}$ is of the form

$$
\sum_{1=1}^{r} p_{i} b_{i}^{2}
$$

with $p_{i} \in P$ and $b_{i} \in K, b_{i} \neq 0$, so

$$
\sum_{1=1}^{r} p_{i} b_{i}^{2}>_{P} 0
$$

Note that $\operatorname{deg}(h)=2 d-n<n$ (because $d<n)$ and $2 d-n$ is odd.
Let $h_{1}(\mathrm{x})$ be an irreducible factor of $h(\mathrm{x})$ of odd degree and suppose β is a root of $h_{1}(\mathrm{x})$. Then

$$
\operatorname{deg}\left(h_{1}\right)=[K(\beta): K]<[L: K]=n .
$$

Since $h_{1}(\beta)=0$, also

$$
f(\beta) h(\beta)=1+\sum_{i=1}^{s} p_{i} g_{i}(\beta)^{2}=0
$$

Therefore $\sum_{i=1}^{s} p_{i} g_{i}(\beta)^{2}=-1 \in T_{K(\beta)}(P)$ and by Corollary 1.4 P does not extend to an ordering of $K(\beta)$. This is in contradiction with the minimality of n.

4. Real closed fields

Definition 4.1. (reell abgeschloßer Körper) A field K is said to be real closed if
(1) K is real,
(2) K has no proper real algebraic extension.

Proposition 4.2. (Artin-Schreir, 1926) Let K be a field. The following are equivalent:
(i) K is real closed.
(ii) K has an ordering P which does not extend to any proper algebraic extension.
(iii) K is real, has no proper algebraic extension of odd degree, and

$$
K=K^{2} \cup-\left(K^{2}\right)
$$

Proof. $(i) \Rightarrow(i i)$. Trivial.
$(i i) \Rightarrow$ (iii). Let P be an ordering which does not extend to any proper algebraic extension. By Theorem 3.1, it follows that K has no proper algebraic extension of odd degree.

Let $b \in P$. Then $b=a^{2}$ for some $a \in K$, otherwise by Theorem 2.1 P extends to an ordering of $K(\sqrt{b})$, which is a proper algebraic extension of K.

Since $K=P \cup(-P)$, it follows that $P=\left\{a^{2}: a \in K\right\}$, and we get (iii).
$(i i i) \Rightarrow(i)$. Note $\operatorname{char}(K)=0$, since K is real.
Then $K(\sqrt{-1})$ is the only proper quadratic extension of K : if $b \in K$ but $\sqrt{b} \notin K$ (i.e. b is not a square), then $b=-a^{2}$ for some $a \neq 0, a \in K$, and $K(\sqrt{b})=K\left(\sqrt{-1} \sqrt{a^{2}}\right)=K(\sqrt{-1})$.

Claim. Every proper algebraic extension of K contains a quadratic subextension.

Note that if Claim is established we are done: indeed it follows that no proper extension can be real since -1 is a square in it.

Let L / K a proper algebraic extension. Without loss of generality assume that $[L: K]$ is finite and even. By Primitive Element Theorem we can further assume that L is a Galois extension.

Let $G=\operatorname{Gal}(L / K),|G|=[L: K]=2^{a} m, a \geqslant 1, m$ odd. Let S be a 2-Sylow subgroup of G (i.e. $|S|=2^{a}$) and let $E:=\operatorname{Fix}(S)$. By Galois correspondence we get:

$$
[E: K]=[G: S]=m \quad \text { odd. }
$$

Therefore by assumption (iii) we must have $[E: K]=[G: S]=1$, so $G=S$ is a 2-group $\left(|G|=2^{a}\right)$ and it has a subgroup G_{1} of index 2. By Galois correspondence, defining $F_{1}:=\operatorname{Fix}\left(G_{1}\right)$ we get a quadratic subextension of L / K.

