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1. ORDERING EXTENSIONS

Definition 1.1. Let L/K be a field extension and P an ordering on K.
An ordering @ of L is said to be an extension (Fortsetzung) of Pif P C @
(equivalently Q N K = P).

Definition 1.2. Let L/K be a field extension and P an ordering on K. We
define

n
T(P) := {szy? :neN,p, e Py, € L}.
i=1

Remark 1.3. Let L/K be a field extension and P an ordering on K.
Then Ty (P) is the smallest preordering of L containing P.

Corollary 1.4. Let L/K be a field extension and P an ordering on K.
Then P has an extension to an ordering Q of L if and only if Tr(P) is a
proper preordering (i.e. if and only if —1 ¢ Tr(P)).

2. QUADRATIC EXTENSIONS

Theorem 2.1. Let K be a field, a € K and define L := K(\/a). Then an
ordering P of K extends to an ordering Q) of L if and only if a € P.

Proof.
(=) Assume Q is an extension of P, then a = (va)? € QN K = P.

(<) Let a € P (without loss of generality we can assume L # K and
Va ¢ K). We show that T7,(P) is a proper preordering (and then

the thesis follows by Corollary 1.4).
If not, there is n € N and there are x1,...,Zn,y1,...,%n € K,

Pi,-...,Pn € P such that
1
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n
—1=> pi(z;i +y:V/a)’
i=1

n
= ZPZ(ZE,Q +ay; + 2ziyi/a).

=1

On the other hand —1 € K, and since every = € K(y/a) can be
written in a unique way as x = ky + kay/a with k1, ke € K, it follows
that

n
~1=) pi(af +ay}) €P,
i=1

contradiction.

3. ODD DEGREE FIELD EXTENSIONS

Theorem 3.1. Let L/K be a field extension such that [L : K] is finite and
odd. Then every ordering of K extends to an ordering of L.

Proof. Otherwise, let n € N the minimal odd degree of a field extension for
which the theorem fails.

Let L/K be a finite field extension such that [L : K] = n and let P be an
ordering of K not extending to an ordering of L.

Since char(K) = 0 Primitive Element Theorem applies and there is some
a € L'\ K such that

where f is the minimal polynomial of a over K. Therefore deg(f) = n,
f(a) = 0 and for every g(x) € K[x]| such that deg(g) < n, we have g(a) # 0.
By Corollary 1.4, —1 € T(P), so

s
=1

where Vi=1,...,s p; € P, p; #0, y; € L, y; # 0. Define
yi = gi(a),
where Vi=1,...,s 0# g;i(x) € K[x] and deg(g) < n. Since
S
1+ Zpigz’(a)2 =0,
i=1
it follows that

1+ pigi(x)? = f(0h(x),  h(x) € K[x].
=1
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Define d := max{deg(g;) : © = 1,...,s}. Then d < n and the polynomial
f(X)h(x) has degree 2d. The coefficient of x>? is of the form

r
1=1

with p; € P and b; € K, b; # 0, so

T
Zpibg >p 0.
1=1

Note that deg(h) = 2d —n < n (because d < n) and 2d — n is odd.
Let hi(x) be an irreducible factor of h(x) of odd degree and suppose 3 is
a root of hi(x). Then

deg(h1) = [K(8) : K] < [L: K] = n.

Since hi(8) = 0, also

FBIB) =1+ pigs(B)? =0.
i=1

Therefore Y5, pigi(8)? = -1 € Tk (s)(P) and by Corollary 1.4 P does not
extend to an ordering of K (/). This is in contradiction with the minimality
of n. (]

4. REAL CLOSED FIELDS

Definition 4.1. (reell abgeschlofier Korper) A field K is said to be real
closed if

(1) K is real,

(2) K has no proper real algebraic extension.

Proposition 4.2. (Artin-Schreir, 1926) Let K be a field. The following are
equivalent:

(1) K is real closed.
(ii) K has an ordering P which does not extend to any proper algebraic
extension.
(iii) K is real, has no proper algebraic extension of odd degree, and

K = K? U —(K?).
Proof. (i) = (ii). Trivial.

(ii) = (¢ii). Let P be an ordering which does not extend to any proper
algebraic extension. By Theorem 3.1, it follows that K has no proper alge-
braic extension of odd degree.

Let b € P. Then b = a? for some a € K, otherwise by Theorem 2.1 P
extends to an ordering of K (\/l;), which is a proper algebraic extension of
K.
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Since K = PU (—P), it follows that P = {a? : a € K}, and we get (4ii).

(7it) = (i). Note char(K) = 0, since K is real.

Then K (y/—1) is the only proper quadratic extension of K: if b € K but
Vb ¢ K (i.e. bis not a square), then b = —a? for some a # 0,a € K, and
K(Vb) = K(v=1Va?) = K(v/-1).

Claim. Every proper algebraic extension of K contains a quadratic subex-
tension.

Note that if Claim is established we are done: indeed it follows that no
proper extension can be real since —1 is a square in it.

Let L/K a proper algebraic extension. Without loss of generality assume
that [L : K] is finite and even. By Primitive Element Theorem we can
further assume that L is a Galois extension.

Let G = Gal(L/K), |G| = [L : K] = 2°m, a > 1, m odd. Let S be
a 2-Sylow subgroup of G (i.e. |S| = 2%) and let F := Fix(S). By Galois
correspondence we get:

[E:K]=[G:S]=m odd.

Therefore by assumption (i7i) we must have [F: K] =[G : S]=1,s0 G =S5
is a 2-group (|G| = 2%) and it has a subgroup G; of index 2. By Galois
correspondence, defining F} := Fix(G1) we get a quadratic subextension of
L/K. O



