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1. Real closed fields

We first recall Artin-Schreir characterization of real closed fields:

Proposition 1.1. (Artin-Schreir, 1926) Let K be a field. The following are
equivalent:

(i) K is real closed.
(ii) K has an ordering P which does not extend to any proper algebraic

extension.
(iii) K is real, has no proper algebraic extension of odd degree, and

K = K2 ∪ −(K2).

Corollary 1.2. If K is a real closed field then

K2 = {a2 : a ∈ K}

is the unique ordering of K.

Proof. Since K is a real closed field, by (ii) it has an ordering P which does
not extend to any proper algebraic extension.

Let b ∈ P . Then b = a2 for some a ∈ K, otherwise P extends to an
ordering of K(

√
b), which is a proper algebraic extension of K.

Therefore P = K2. �

Remark 1.3. We denote by
∑
K2 the unique ordering of a real closed field

K, even though we know that
∑
K2 = K2, to avoid any confusion with the

cartesian product K ×K.

Corollary 1.4. Let (K,6) be an ordered field. Then K is real closed if and
only if

(a) every positive element in K has a square root in K, and
(b) every polynomial of odd degree has a root in K.

Examples 1.5. R is real closed and Q is not.
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2. The algebraic closure of a real closed field

Lemma 2.1. (Hilfslemma) If K is a field such that K2 is an ordering of K,
then every element of K(

√
−1) is a square.

Proof. Let x = a +
√
−1 b ∈ K(

√
−1), a, b ∈ K, b 6= 0. We can suppose

b > 0. We want to find y ∈ K such that x = y2.

K2 is an ordering ⇒ a2 + b2 ∈ K2. Let c ∈ K, c > 0 such that

a2 + b2 = c2.

Since a2 6 a2 + b2 = c2, |a| 6 c, so c+ a > 0, c− a > 0 (−c 6 a 6 c).
Therefore 1

2(c± a) ∈ K2. Let d, e ∈ K, d, e > 0 such that

1
2

(c+ a) = d2

1
2

(c− a) = e2.

So

d =
√
c+ a√

2
e =
√
c− a√

2

Now set y := d+ e
√
−1. Then

y2 = (d+ e
√
−1)2

= d2 + (e
√
−1)2 + 2de

√
−1

=
1
2

(c+ a)− 1
2

(c− a) + 2
1
2

√
(c− a)(c+ a)

√
−1

=
1
2
a+

1
2
a+

√
c2 − a2

√
−1

= a+
√
b2
√
−1

= a+ b
√
−1

= x.

�

Theorem 2.2. (Fundamental Theorem of Algebra) If K is a real closed field
then K(

√
−1) is algebraically closed.

Proof. Let L ⊇ K(
√
−1) be an algebraic extension of K(

√
−1). We show

L = K(
√
−1).

Set G := Gal(L/K). Then [L : K] = |G| = 2am, a > 1, m odd.
Let S < G be a 2-Sylow subgroup (|S| = 2a), and F := Fix(S). We have

[F : K] = [G : S] = m odd.

Since K is real closed, it follows that m = 1, so G = S and |G| = 2a. Now

[L : K(
√
−1)][K(

√
−1) : K] = [L : K] = 2a.

Therefore [L : K(
√
−1)] = 2a−1. We claim that a = 1.
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If not, set G1 := Gal(L/K(
√
−1)), let S1 be a subgroup of G1 of index 2,

and F1 := Fix(S1). So

[F1 : K(
√
−1)] = [G1 : S1] = 2,

and F1 is a quadratic extension of K(
√
−1). But every element of K(

√
−1)

is a square by Lemma 2.1, contradiction. �

Notation. We denote by K̄ the algebraic closure of a field K, i.e. the
smallest algebraically closed field containing K.

We have just proved that if K is real closed then K̄ = K(
√
−1).

3. Factorization in R[x]

Corollary 3.1. (Irreducible elements in R[x] and prime factorizaction in
R[x]). Let R be a real closed field, f(x) ∈ R[x]. Then

(1) if f(x) is monic and irreducible then

f(x) = x− a or f(x) = (x− a)2 + b2, b 6= 0;

(2)

f(x) = d
n∏

i=1

(x− ai)
m∏

j=1

(x− dj)2 + b2j , bj 6= 0.

Proof. Let f(x) ∈ R[x] be monic and irreducible. Then deg(f) 6 2.
Suppose not, and let α ∈ R̄ a root of f(x). Then

[R(α) : R] = deg(f) > 2.

On the other hand, by 2.2

[R(α) : R] 6 [R̄ : R] = 2,

contradiction.

If deg(f) = 1, then f(x) = x− a, for some a ∈ R.

If deg(f) = 2, then f(x) = x2 − 2ax + c = (x − a)2 + (c − a2), for some
a, c ∈ R.

We claim that c− a2 > 0. If not,

c− a2 6 0 ⇒ −(c− a2) > 0 ⇒ a2 − c > 0,

the discriminant 4(a2 − c) > 0, f(x) has a root in R and factors, contra-
diction.

Therefore (c− a2) ∈ R2 and there is b ∈ R such that (c− a2) = b2 6= 0.
�
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Corollary 3.2. (Zwischenwertsatz : Intermediate value Theorem) Let R be
a real closed field, f(x) ∈ R[x]. Assume a < b ∈ R with f(a)f(b) < 0. Then
∃ c ∈ R, a < c < b such that f(c) = 0.

Proof. We can assume f(a) < 0 < f(b).
By previous Corollary,

f(x) = d
n∏

i=1

(x− ai)
m∏

j=1

(x− dj)2 + b2j

= d
n∏

i=1

li(x)q(x),

where li(x) := x− ai, ∀ i = 1, . . . , n and q(x) :=
∏m

j=1(x− dj)2 + b2j .

We claim that there is some k ∈ {1, . . . , n} such that lk(a)lk(b) < 0. Since

sign(f) = sign(d)
n∏

i=1

sign(li) sign(q) and sign(q) = 1,

if we had that

sign(li(a)) = sign(li(b)) ∀ i ∈ {1, . . . , n},

we would have
sign(f(a)) = sign(f(b)),

in contradiction with f(a)f(b) < 0.

For such a k,
lk(a) < 0 < lk(b),

i.e.
a− ak < 0 < b− ak,

and c := ak ∈ ]a, b[ is a root of f(x). �

Corollary 3.3. (Rolle) Let R be a real closed field, f(x) ∈ R[x], Assume
that a, b ∈ R, a < b and f(a) = f(b) = 0. Then ∃ c ∈ R, a < c < b such that
f ′(c) = 0.


