REAL ALGEBRAIC GEOMETRY LECTURE NOTES
 (06: 05/11/09)

SALMA KUHLMANN

Contents

1. Counting roots in an interval 1
2. Bounding the roots 2
3. Changes of sign 3

Let R be a real closed field (for all this lecture).

1. Counting roots in an interval

Definition 1.1. Let $f(\mathrm{x}) \in R[\mathrm{x}], a \in R$,

$$
f(\mathrm{x})=(\mathrm{x}-a)^{m} h(\mathrm{x})
$$

with $m \in \mathbb{N}, m \geqslant 1$ and $h(a) \neq 0$ (i.e. $(\mathrm{x}-a)$ is not a factor of $h(\mathrm{x}))$.
We say that m is the multiplicity (Vielfachheit) of f at a.
Corollary 1.2. (Generalized Intermediate Value Theorem: Verstärkung Zwischenwertsatz). Let $f(\mathrm{x}) \in R[\mathrm{x}] ; a, b \in R, a<b, f(a) f(b)<0$ (i.e. $f(a)<0<f(b)$ or $f(b)<0<f(a))$. Then the number of roots of $f(\mathrm{x})$ counting multiplicities in the interval $] a, b[\subseteq R$ is odd (in particular, f has a root in $] a, b[)$.
Proof. By Corollary 3.1 of 5 th lecture (3/11/09), we can write

$$
f(\mathrm{x})=\prod_{i=1}^{n}\left(\mathrm{x}-c_{i}\right)^{m_{i}} g(\mathrm{x})
$$

with $g(\mathrm{x})=d q(\mathrm{x})$, where $d \in R$ is the leading coefficient of $f(\mathrm{x})$ and $q(\mathrm{x})$ is the product of the irreducible quadratic factors of $f(\mathrm{x})$.

Note that $g(\mathrm{x})$ has constant sign on R (i.e. $g(r)>0 \forall r \in R$ or $g(r)<$ $0 \forall r \in R$). Without loss of generality, we can suppose $d=1$ (and so $g(\mathrm{x})$ is positive everywhere).

Set $\forall i=1, \ldots, n$

$$
\left\{\begin{array}{l}
L_{i}(\mathrm{x}):=\left(\mathrm{x}-c_{i}\right)^{m_{i}} \\
l_{i}(\mathrm{x}):=\mathrm{x}-c_{i}
\end{array}\right.
$$

If $l_{i}(\mathrm{x})$ changes sign in $] a, b\left[\right.$ we must have $l_{i}(a)<0<l_{i}(b)$. Note that $L_{i}(\mathrm{x})$ changes sign in $] a, b\left[\right.$ if and only if $l_{i}(\mathrm{x})$ does and m_{i} is odd.

In particular if $L_{i}(\mathrm{x})$ changes sign we must have $L_{i}(a)<0<L_{i}(b)$ as well.

Let us count the number of distinct $i \in\{1, \ldots, n\}$ for which $L_{i}(a)<0<$ $L_{i}(b)$. We claim that this number must be odd. If not, we get an even number of i such that $L_{i}(a) L_{i}(b)<0$, so their product would be positive, in contradiction with the fact that $f(a) f(b)<0$.

Set

$$
\left|\left\{i \in\{1, \ldots, n\}: L_{i}(a)<0<L_{i}(b)\right\}\right|=M \geqslant 1 \quad \text { odd. }
$$

Say these are L_{1}, \ldots, L_{M}. So the total number of roots of f in $] a, b[$ counting multiplicity is

$$
\sum:=m_{1}+\cdots+m_{M}
$$

Since m_{i} is odd $\forall i=1, \ldots, M$ and M is odd, it follows that \sum is odd as well.

2. Bounding the roots

Corollary 2.1. Let $f(\mathrm{x}) \in R[\mathrm{x}], f(\mathrm{x})=d \mathrm{x}^{m}+d_{m-1} \mathrm{x}^{m-1}+\cdots+d_{0}$. Set

$$
D:=1+\sum_{i=m-1}^{0}\left|\frac{d_{i}}{d}\right| \in R .
$$

Then
(i) $a \in R, f(a)=0 \Rightarrow|a|<D$; (i.e. f has no root in $]-\infty,-D] \cup[D+\infty[$)
(ii) $y \in[D,+\infty[\Rightarrow \operatorname{sign}(f(y))=\operatorname{sign}(d)$;
(iii) $y \in]-\infty,-D\left[\Rightarrow \operatorname{sign}(f(y))=(-1)^{m} \operatorname{sign}(d)\right.$.

Proof.
(i) For every $i=0, \ldots, m-1$ set $b_{i}:=\frac{d_{i}}{d}$ and compute for $|y| \geqslant D$:

$$
f(y)=d y^{m}\left(1+b_{m-1} y^{-1}+\cdots+b_{0} y^{-m}\right) .
$$

Now

$$
\left|b_{m-1} y^{-1}+\cdots+b_{0} y^{-m}\right| \leqslant\left(\left|b_{m-1}\right|+\cdots+\left|b_{0}\right|\right) D^{-1}<1 .
$$

(ii) If $y \geqslant D$ then $f(y)=d \prod\left(y-a_{i}\right)^{m_{i}} q(y)$ where $\operatorname{deg}(q)$ is even and $y-a_{i}>0$.
(iii) If $y \leqslant-D$ then $\left(y-a_{i}\right)^{m_{i}}<0$ if and only if m_{i} is odd. Moreover m is odd if and only if $\sum m_{i}$ is odd.

Corollary 2.2. (Rolle's Satz) Let $f(\mathrm{x}) \in R[\mathrm{x}], a<b \in R$ such that $f(a)=$ $f(b)$. Then there is $c \in R, a<c<b$ such that $f^{\prime}(c)=0$.

Proof. We can suppose $f(a)=f(b)=0$ (otherwise if $f(a)=f(b)=k \neq 0$, we can consider the polynomial $(f-k)(\mathrm{x})$).

We can also assume that $f(\mathrm{x})$ has no root in $] a, b[$. So

$$
f(\mathrm{x})=(\mathrm{x}-a)^{m}(\mathrm{x}-b)^{n} g(\mathrm{x})
$$

where $g(\mathrm{x})$ has no root in $[a, b]$, and by Corollary 1.2 (IVT) $g(\mathrm{x})$ has constant sign in $[a, b]$. Compute

$$
f^{\prime}(\mathrm{x})=(\mathrm{x}-a)^{m-1}(\mathrm{x}-b)^{n-1} g_{1}(\mathrm{x})
$$

where

$$
g_{1}(\mathrm{x}):=m(\mathrm{x}-b) g(\mathrm{x})+n(\mathrm{x}-a) g(\mathrm{x})+(\mathrm{x}-a)(\mathrm{x}-b) g^{\prime}(\mathrm{x})
$$

Therefore

$$
\begin{aligned}
g_{1}(a) & =m(a-b) g(a) \\
g_{1}(b) & =n(b-a) g(b) .
\end{aligned}
$$

Since $g_{1}(a) g_{1}(b)<0$, by the Intermediate Value Theorem (1.2) $g_{1}(\mathrm{x})$ has a root in $] a, b\left[\right.$ and so does $f^{\prime}(\mathrm{x})$.

Corollary 2.3. (Mittelwertsatz: Middle Value Theorem) Let $f(\mathrm{x}) \in R[\mathrm{x}]$, $a<b \in R$. Then there is $c \in R, a<c<b$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Proof. We can apply Rolle's Satz to

$$
F(\mathrm{x}):=f(\mathrm{x})-(\mathrm{x}-a) \frac{f(b)-f(a)}{b-a}
$$

since $F(a)=F(b)$.
Corollary 2.4. (Monotonicity Theorem). Let $f(\mathrm{x}) \in R[\mathrm{x}], a<b \in R$. If f^{\prime} is positive (respectively negative) on $] a, b[$, then f is strictly increasing (respectively strictly decreasing) on $[a, b]$.

Proof. If $a \leqslant a_{1}<b_{1} \leqslant b$, by the Middle Value Theorem there is some $c \in R$, $a_{1}<c<b_{1}$ such that

$$
f^{\prime}(c)=\frac{f\left(b_{1}\right)-f\left(a_{1}\right)}{b_{1}-a_{1}}
$$

3. Changes of sign

Definition 3.1.

(i) Let $\left(c_{1}, \ldots, c_{n}\right)$ a finite sequence in R. An index $i \in\{1, \ldots, n\}$ is a change of sign (Vorzeichenwechsel) if $c_{i} c_{i+1}<0$.
(ii) Let $\left(c_{1}, \ldots, c_{n}\right)$ a finite sequence in R. After we have removed all zero's by the sequence, we define

$$
\begin{aligned}
\operatorname{Var}\left(c_{1}, \ldots, c_{n}\right): & =\mid\{i \in\{1, \ldots, n\}: i \text { is a change of sign }\} \mid \\
& =\left|\left\{i \in\{1, \ldots, n\}: c_{i} c_{i+1}<0\right\}\right| .
\end{aligned}
$$

Theorem 3.2. (Lemma von Descartes) Let $f(\mathrm{x})=a_{n} \mathrm{x}^{n}+\cdots+a_{0} \in R[\mathrm{x}]$, $a_{n} \neq 0$. Then

$$
\mid\{a \in R: a>0 \text { and } f(a)=0\} \mid \leqslant \operatorname{Var}\left(a_{n}, \ldots, a_{1}, a_{0}\right) .
$$

Proof. By induction on $n=\operatorname{deg}(f)$. The case $n=1$ is obvious, so suppose $n>1$.

Let r be the smallest index such that $a_{r} \neq 0$. By induction applied to

$$
f^{\prime}(\mathrm{x})=n a_{n} \mathrm{x}^{n-1}+\cdots+r a_{r} \mathrm{x}^{r-1}
$$

we know that there are $\operatorname{Var}\left(n a_{n}, \ldots, r a_{r}\right)=\operatorname{Var}\left(a_{n}, \ldots, a_{r}\right)$ many positive roots of f^{\prime}. Set $c:=$ the smallest such positive root of f^{\prime} (by convention $c:=+\infty$ if none exists)

Apply Rolle's Theorem: f has at most $1+\operatorname{Var}\left(a_{n}, \ldots, a_{r}\right)$ positive roots.
Case 1. If the number of positive roots of f is strictly less than $1+$ $\operatorname{Var}\left(a_{n}, \ldots, a_{r}\right)$, then the number of positive roots of f is $\leqslant \operatorname{Var}\left(a_{n}, \ldots, a_{r}\right) \leqslant$ $\operatorname{Var}\left(a_{n}, \ldots, a_{r}, a_{0}\right)$ and we are done.

Case 2. Assume f has exactly $1+\operatorname{Var}\left(a_{n}, \ldots, a_{r}\right)$ positive roots. We claim that in this case

$$
1+\operatorname{Var}\left(a_{n}, \ldots, a_{r}\right)=\operatorname{Var}\left(a_{n}, \ldots, a_{r}, a_{0}\right)
$$

We observe that f has a root a in $] 0, c[$.
For $0<x \leqslant c$ we have that $\operatorname{sign}\left(f^{\prime}(x)\right)=\operatorname{sign}\left(a_{r}\right) \neq 0$, so f is strictly monotone in the interval $[0, c]$ (Monotonicity Theorem). So

$$
\begin{aligned}
& a_{r}>0 \Rightarrow a_{0}=f(0)<f(a)=0 \Rightarrow a_{0}<0, \\
& a_{r}<0 \Rightarrow a_{0}=f(0)>f(a)=0 \Rightarrow a_{0}>0 .
\end{aligned}
$$

In both cases $a_{0} a_{r}<0$ and the claim is established.
Corollary 3.3. Let $f(\mathrm{x}) \in R[\mathrm{x}]$ a polynomial with m monomials. Then f has at most $2 m-1$ roots in R.

Proof. Consider $f(\mathrm{x})$ and $f(-\mathrm{x})$. By previous Theorem they have both at most $m-1$ strictly positive roots in R. So $f(\mathrm{x})$ has at most $2 m-2$ non-zero roots and therefore at most $2 m-1$ roots in R.

