REAL ALGEBRAIC GEOMETRY LECTURE NOTES (07: 10/11/09)

SALMA KUHLMANN

Contents

1. Sturm's Theorem

1

Let R be a real closed field.

1. Sturm's Theorem

Definition 1.1.

(i) Let $f \in R[x]$ be a non-constant polynomial, $\deg(f) \ge 1$. The **Sturm sequence** of f is defined recursively as a sequence (f_0, \ldots, f_r) of polynomials in R[x] such that:

$$f_{0} := f, f_{1} := f' and$$

$$f_{0} = f_{1}q_{1} - f_{2}$$

$$f_{1} = f_{2}q_{2} - f_{3}$$

$$...$$

$$f_{i-1} = f_{i}q_{i} - f_{i+1}$$

$$...$$

$$f_{r-2} = f_{r-1}q_{r-1} - f_{r}$$

$$f_{r-1} = f_{r}q_{r},$$

where $f_i, q_i \in R[x], f_i \neq 0$ and $\deg(f_i) < \deg(f_{i-1})$.

(ii) Let $x \in R$. Set

$$V_f(x) := \operatorname{Var}(f_0(x), \dots, f_r(x)).$$

We recall that after we have removed all zero's by the sequence (c_1, \ldots, c_n) , we defined $Var(c_1, \ldots, c_n)$ as the number of changes of sign in (c_1, \ldots, c_n) , i.e.

$$Var(c_1, \dots, c_n) = |\{i \in \{1, \dots, n\} : c_i c_{i+1} < 0\}|.$$

Theorem 1.2. (Sturm 1829). Let $a, b \in R$, a < b, $f(a)f(b) \neq 0$. Then

$$|\{c: a \le c \le b, f(c) = 0\}| = V_f(a) - V_f(b).$$

Proof. For the proof we study the function $V_f(x)$, $x \in R$, locally constant except around finitely many roots for f_0, \ldots, f_r .

- (1) Suppose $gcd(f_0, f_1) = 1$.
- (2) Hilfslemma $\Rightarrow \exists \delta \text{ such that}$

$$|x - c| < \delta \implies \operatorname{sign}(f_0(x)f_1(x)) = \operatorname{sign}(x - c) = \begin{cases} -1 & \text{if } x < c \\ 0 & \text{if } x = c \\ 1 & \text{if } x > c. \end{cases}$$

(3) $\forall i \in \{1, ..., r-1\}: \gcd(f_{i-1}, f_i) = 1$ and

$$f_{i-1} = q_i f_i - f_{i+1}, \quad \text{with } f_{i+1} \neq 0.$$

So if $f_i(c) = 0$ then

$$f_{i-1}(c)f_{i+1}(c) < 0.$$

(4) Let $f_i(c) = 0$ for $i \in \{0, \dots, r-1\}$. Then $f_{i+1}(c) \neq 0$ (so sign $(f_{i+1}(c)) = \pm 1$).

We shall now compare for $f_i(c) = 0, i \in \{0, ..., r-1\}$

$$sign(f_i(x))$$
 $sign(f_{i+1}(x))$

for $|x-c| < \delta$ and count.

We first examine the case i = 0.

Observe that $\operatorname{sign}(f_1(x)) \neq 0 \ \forall x \text{ such that } |x-c| < \delta \text{ because of Hilfslemma. So in particular } \operatorname{sign}(f_1(x)) \text{ is constant for } |x-c| < \delta \text{ and it is equal to } \operatorname{sign}(f_1(c))$:

	$x \to c$	x = c	$x \to c_+$
$f_0(x)$	$-\operatorname{sign}(f_1(c))$	0	$sign(f_1(c))$
$f_1(x)$	$sign(f_1(c))$	$sign(f_1(c))$	$sign(f_1(c))$
contribution to $V_f(x)$	1	0	0

Now consider $i \in \{1, \ldots, r-1\}$ and use (2), i.e.

$$f_i(d) = 0 \implies f_{i-1}(d)f_{i+1}(d) < 0$$
:

	$x \to d$	x = d	$x \to d_+$
$f_{i-1}(x)$	$-\operatorname{sign}(f_{i+1}(d))$	$-\operatorname{sign}(f_{i+1}(d))$	$-\operatorname{sign}(f_{i+1}(d))$
$f_i(x)$		0	
$f_{i+1}(x)$	$sign(f_{i+1}(d))$	$sign(f_{i+1}(d))$	$sign(f_{i+1}(d))$
contribution to $V_f(x)$	1	1	1

Therefore for a < b, $V_f(a) - V_f(b)$ is the number of roots of f in [a, b[.

Let us consider now the general case. Set

$$g_i := f_i/f_r$$
 $i = 0, \dots, r.$

The sequence of polynomials (g_0, \ldots, g_r) satisfies the previous conditions (1) - (4). We can conclude by noticing that:

- (i) $\operatorname{Var}(g_0(x), \dots, g_r(x)) = \operatorname{Var}(f_0(x), \dots, f_r(x))$ (because $f_i(x) = f_r(x)g_i(x)$),
- (ii) $f = f_0$ and $g_0 = f/f_r$ have the same zeros $(f_r = \gcd(f, f'),$ so $g = f/f_r$ has only simple roots, whereas f has roots with multiplicities.)

For i = 0, ..., r set $d_i := \deg(f_i)$ and $\varphi_i :=$ the leading coefficient of f_i . Set

$$V_f(-\infty) := \operatorname{Var}((-1)^{d_0} \varphi_0, (-1)^{d_1} \varphi_1, \dots, (-1)^{d_r} \varphi_r)$$
$$V_f(+\infty) := \operatorname{Var}(\varphi_0, \varphi_1, \dots, \varphi_r).$$

Then we have:

Corollary 1.3. The number of distinct roots of f is $V_f(-\infty) - V_f(+\infty)$.