REAL ALGEBRAIC GEOMETRY LECTURE NOTES (08: 12/11/09)

SALMA KUHLMANN

Contents

1.	Real closure	1
2.	Order preserving extensions	2

1. Real closure

Definition 1.1. Let (K, P) be an ordered field. R is a real closure of (K, P) if

- (1) R is real closed,
- (2) $R \supseteq K$, $R \mid K$ is algebraic,
- (3) $P = \sum R^2 \cap K$ (i.e. the order on K is the restriction of the unique order R to K).

Theorem 1.2. Every ordered field (K, P) has a real closure.

Proof. Apply Zorn's Lemma to

$$\mathcal{L} := \{ (L, Q) : L \mid K \text{ algebraic}, \ Q \cap K = P \}.$$

Proposition 1.3. (Corollary to Sturm's Theorem) Let K be a field. Let R_1 , R_2 be two real closed fields such that

$$K \subseteq R_1$$
 and $K \subseteq R_2$

with

$$P:=K \ \cap \ \sum R_1^2=K \ \cap \ \sum R_2^2$$

(i.e. R_1 and R_2 induce the same ordering P on K).

Let $f(x) \in K[x]$; then the number of roots of f(x) in R_1 is equal to the number of roots of f(x) in R_2 .

2. Order preserving extensions

Proposition 2.1. Let (K, P) be an ordered field. Let R be a real closed field containing (K, P). Let $K \subseteq L \subseteq R$ be such that $[L : K] < \infty$. Let S be a real closed field with

$$\varphi \colon (K,P) \hookrightarrow (S, \sum S^2)$$

an order preserving embedding. Then φ extends to an order preserving embedding

$$\psi \colon (L, \ \sum R^2 \cap L) \ \hookrightarrow \ (S, \sum S^2).$$

Proof. We recall that if (K, P) and (L, Q) are ordered fields, a field homomorphism $\varphi \colon K \longrightarrow L$ is called **order preserving** with respect to P and Q if $\varphi(P) \subseteq Q$ (equivalently $P = \varphi^{-1}(Q)$).

By the Theorem of the Primitive Element $L = K(\alpha)$.

Consider $f = MinPol(\alpha | K)$. Since $\alpha \in R$, $\varphi(f)$ has at least one root β in S,

$$L := K(\alpha) \quad \stackrel{\psi}{\longleftrightarrow} \quad \varphi(K)(\beta),$$

so there is at least one extension of φ from K to L.

Let ψ_1, \ldots, ψ_r all such extensions of φ to $L = K(\alpha)$, and for a contradiction assume that none of them is order preserving with respect to $Q = L \cap \sum R^2$. Then $\exists b_1, \ldots, b_r \in L$, $b_i > 0$ (in R) and $\psi_i(b_i) < 0$ (in S) $\forall i = 1, \ldots, r$.

Consider $L':=L(\sqrt{b_1},\ldots,\sqrt{b_r})\subset R$. Since $[L:K]<\infty$, also $[L',K]<\infty$. So let τ be an extension of φ from K to L'. In particular $\tau_{|_L}$ is one of the ψ_i 's. Say $\tau_{|_L}=\psi_1$.

Now compute for $b_1 \in L$,

$$\psi_1(b_1) = \tau(b_1) = \tau((\sqrt{b_1})^2) = (\tau(\sqrt{b_1}))^2 \in \sum S^2,$$

in contradiction with the fact that $\psi_1(b_1) < 0$.

Theorem 2.2. Let (K, P) be an ordered field and $(R, \sum R^2)$ be a real closure of (K, P). Let $(S, \sum S^2)$ be a real closed field and assume that

$$\varphi \colon (K,P) \ \hookrightarrow \ (S,\ \sum S^2)$$

is an order preserving embeding. Then φ has a uniquely determined extension

$$\psi \colon (R, \ \sum R^2) \ \hookrightarrow \ (S, \ \sum S^2).$$

Proof. Consider

$$\mathcal{L}:=\{(L,\psi):\ K\subset L\subset R;\ \psi\colon L\hookrightarrow S,\ \psi_{|_K}=\varphi\}.$$

Let (L, ψ) be a maximal element. Then by Proposition 2.1 we must have L = R.

Therefore we have an order preserving embedding ψ of R extending φ

$$\psi \colon R \hookrightarrow S$$
.

We want to prove that ψ is unique. We show that $\psi(\alpha) \in S$ is uniquely determined for every $\alpha \in R$.

Let $f = PolMin(\alpha \mid K)$ and let $\alpha_1 < \dots, \alpha_r$ all the real roots of f in R. Let $\beta_1 < \cdots < \beta_r$ be all the real roots of f in S. Since $\psi : R \hookrightarrow S$ is order preserving, we must have $\psi(\alpha_i) = \beta_i$ for every i = 1, ..., r. In particular $\alpha = \alpha_j$ for some $1 \leq j \leq r$ and $\psi(\alpha) = \beta_j \in S$.

Corollary 2.3. Let (K, P) be an ordered field, R_1 , R_2 two real closures of (K, P). Then exists a unique

$$\varphi \colon R_1 \longrightarrow R_2$$

K-isomorphism (i.e. with $\varphi_{|_{K}} = id$).

Corollary 2.4. Let R be a real closure of (K, P). Then the only K-automorphism of R is the identity.

Corollary 2.5. Let R be a real closed field, $K \subseteq R$ a subfield. Set P := $K \cap \sum R^2$ the induced order. Then

$$K^{ralg} = \{\alpha \in R : \alpha \text{ is algebraic over } K\}$$

is relatively algebraic closed in R and is a real closure of (K, P).

Proof. It is enough to show that K^{ralg} is real closed.

 K^{ralg} is real because $Q:=K^{ralg}\cap\sum R^2$ is an induced ordering. Let $a\in Q,\ a=b^2,\ b\in R.$ So $p(\mathbf{x})=\mathbf{x}^2-a\in K^{ralg}[\mathbf{x}]$ has a root in R.

One can see that b is algebraic over K (so $b \in K^{ralg}$).

Similarly one shows that every odd polynomial with coefficients in K^{ralg} has a root in K^{ralg} .

Corollary 2.6. Let (K, P) be an ordered field, S a real closed field and $\varphi \colon (K,P) \hookrightarrow S$ an order preserving embedding. Let $L \mid K$ an algebraic extension. Then there is a bijective correspondence

 $\{extensions \ \psi \colon L \to S \ of \ \varphi\} \ \longrightarrow \ \{extensions \ Q \ of \ P \ to \ L\}$

$$\psi \longrightarrow \psi^{-1}(\sum S^2)$$

Proof.

(⇒) Let $\psi: L \hookrightarrow S$ an extension of φ . Then indeed $Q:=\psi^{-1}(\sum S^2)$ is an ordering on L. Furthermore $\psi^{-1}(\sum S^2) \cap K = \varphi^{-1}(\sum S^2) = P$. So the extension ψ induces the extension Q.

(\Leftarrow) Conversely assume that Q is an extension of P from K to L ($Q \cap K = P$). Note that if R is a real closure of (L, Q) then R is a real closure of (K, P) as well.

Now apply Theorem 2.2 to extend φ to $\sigma: R \to S$. Set $\psi := \sigma_{|L}$ which is order preserving with respect to Q. So the map is well-defined and surjective. To see that it is also injective, assume

$$\psi_1 \colon L \longrightarrow S, \quad \psi_2 \colon L \longrightarrow S, \quad \psi_{1|_K} = \psi_{2|_K} = \varphi$$

which induce the same order

$$Q=\psi_1^{-1}(\sum S^2)=\psi_2^{-1}(\sum S^2)$$

on L. Let R be the real closure of (L, Q). Apply Theorem 2.2 to ψ_1 and ψ_2 to get uniquely determined extensions

$$\sigma_1 \colon R \longrightarrow S, \quad \sigma_2 \colon R \longrightarrow S,$$

of ψ_1 and ψ_2 respectively.

But now $\sigma_{1|_K} = \sigma_{2|_K} = \varphi$. By the uniqueness part of Theorem 2.2 we get $\sigma_1 = \sigma_2$ and a fortiori $\psi_1 = \psi_2$.

Corollary 2.7. Let (K, P) be an ordered field, R a real closure, $[L : K] < \infty$. Let $L = K(\alpha)$, $f = MinPol(\alpha | K)$. Then there is a bijection

$$\{roots\ of\ f\ in\ R\}\ \longrightarrow\ \{extensions\ Q\ of\ P\ to\ L\}.$$

Proof. If β is a root we consider the K-embedding

$$\varphi_{\alpha} \colon L \hookrightarrow R$$

such that $\varphi_{\alpha}(\alpha) = \beta$. Set $Q := \varphi^{-1}(\sum R^2)$ ordering on L extending P. \square

Example 2.8. $K = \mathbb{Q}(\sqrt{2})$ has 2 orderings $P_1 \neq P_2$, with $\sqrt{2} \in P_1$, $\sqrt{2} \notin P_2$. The Minimum Polynomial of $\sqrt{2}$ over \mathbb{Q} is $p(x) = x^2 - 2$.