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1. Real closure

Definition 1.1. Let (K,P ) be an ordered field. R is a real closure of (K,P )
if

(1) R is real closed,
(2) R ⊇ K, R |K is algebraic,
(3) P =

∑
R2 ∩K (i.e. the order on K is the restriction of the unique

order R to K).

Theorem 1.2. Every ordered field (K,P ) has a real closure.

Proof. Apply Zorn’s Lemma to

L := {(L,Q) : L |K algebraic, Q ∩K = P}.

�

Proposition 1.3. (Corollary to Sturm’s Theorem) Let K be a field. Let R1,
R2 be two real closed fields such that

K ⊆ R1 and K ⊆ R2

with

P := K ∩
∑

R2
1 = K ∩

∑
R2

2

(i.e. R1 and R2 induce the same ordering P on K).
Let f(x) ∈ K[x]; then the number of roots of f(x) in R1 is equal to the

number of roots of f(x) in R2.
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2. Order preserving extensions

Proposition 2.1. Let (K,P ) be an ordered field. Let R be a real closed field
containing (K,P ). Let K ⊆ L ⊆ R be such that [L : K] < ∞. Let S be a
real closed field with

ϕ : (K,P ) ↪→ (S,
∑

S2)

an order preserving embedding. Then ϕ extends to an order preserving em-
bedding

ψ : (L,
∑

R2 ∩ L) ↪→ (S,
∑

S2).

Proof. We recall that if (K,P ) and (L,Q) are ordered fields, a field homo-
morphism ϕ : K −→ L is called order preserving with respect to P and Q
if ϕ(P ) ⊆ Q (equivalently P = ϕ−1(Q)).

By the Theorem of the Primitive Element L = K(α).
Consider f = MinPol(α |K). Since α ∈ R, ϕ(f) has at least one root β

in S,

L := K(α)
ψ←→ ϕ(K)(β),

so there is at least one extension of ϕ from K to L.
Let ψ1, . . . , ψr all such extensions of ϕ to L = K(α), and for a con-

tradiction assume that none of them is order preserving with respect to
Q = L ∩

∑
R2. Then ∃ b1, . . . , br ∈ L, bi > 0 (in R) and ψi(bi) < 0 (in S)

∀ i = 1, . . . , r.
Consider L′ := L(

√
b1, . . . ,

√
br) ⊂ R. Since [L : K] <∞, also [L′,K] < ∞.

So let τ be an extension of ϕ from K to L′. In particular τ|L is one of the
ψi’s. Say τ|L = ψ1.

Now compute for b1 ∈ L,

ψ1(b1) = τ(b1) = τ((
√
b1)2) = (τ(

√
b1))2 ∈

∑
S2,

in contradiction with the fact that ψ1(b1) < 0.
�

Theorem 2.2. Let (K,P ) be an ordered field and (R,
∑
R2) be a real closure

of (K,P ). Let (S,
∑
S2) be a real closed field and assume that

ϕ : (K,P ) ↪→ (S,
∑

S2)

is an order preserving embeding. Then ϕ has a uniquely determined extension

ψ : (R,
∑

R2) ↪→ (S,
∑

S2).

Proof. Consider

L := {(L,ψ) : K ⊂ L ⊂ R; ψ : L ↪→ S, ψ|K = ϕ}.

Let (L,ψ) be a maximal element. Then by Proposition 2.1 we must have
L = R.



REAL ALGEBRAIC GEOMETRY LECTURE NOTES (08: 12/11/09) 3

Therefore we have an order preserving embedding ψ of R extending ϕ

ψ : R ↪→ S.

We want to prove that ψ is unique. We show that ψ(α) ∈ S is uniquely
determined for every α ∈ R.

Let f = PolMin(α |K) and let α1 < . . . , αr all the real roots of f in R.
Let β1 < · · · < βr be all the real roots of f in S. Since ψ : R ↪→ S is order
preserving, we must have ψ(αi) = βi for every i = 1, . . . , r. In particular
α = αj for some 1 6 j 6 r and ψ(α) = βj ∈ S. �

Corollary 2.3. Let (K,P ) be an ordered field, R1, R2 two real closures of
(K,P ). Then exists a unique

ϕ : R1 −→ R2

K-isomorphism (i.e. with ϕ|K = id).

Corollary 2.4. Let R be a real closure of (K,P ). Then the onlyK-automorphism
of R is the identity.

Corollary 2.5. Let R be a real closed field, K ⊆ R a subfield. Set P :=
K ∩

∑
R2 the induced order. Then

Kralg = {α ∈ R : α is algebraic over K}

is relatively algebraic closed in R and is a real closure of (K,P ).

Proof. It is enough to show that Kralg is real closed.
Kralg is real because Q := Kralg ∩

∑
R2 is an induced ordering.

Let a ∈ Q, a = b2, b ∈ R. So p(x) = x2 − a ∈ Kralg[x] has a root in R.
One can see that b is algebraic over K (so b ∈ Kralg).
Similarly one shows that every odd polynomial with coefficients in Kralg

has a root in Kralg. �

Corollary 2.6. Let (K,P ) be an ordered field, S a real closed field and
ϕ : (K,P ) ↪→ S an order preserving embedding. Let L |K an algebraic ex-
tension. Then there is a bijective correspondence

{extensions ψ : L→ S of ϕ} −→ {extensions Q of P to L}

ψ 7→ ψ−1(
∑

S2)

Proof.
(⇒) Let ψ : L ↪→ S an extension of ϕ. Then indeed Q := ψ−1(

∑
S2) is

an ordering on L. Furthermore ψ−1(
∑
S2) ∩K = ϕ−1(

∑
S2) = P .

So the extension ψ induces the extension Q.
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(⇐) Conversely assume that Q is an extension of P fromK to L (Q∩K =
P ). Note that if R is a real closure of (L,Q) then R is a real closure
of (K,P ) as well.

Now apply Theorem 2.2 to extend ϕ to σ : R → S. Set ψ := σ|L
which is order preserving with respect to Q. So the map is well-
defined and surjective. To see that it is also injective, assume

ψ1 : L −→ S, ψ2 : L −→ S, ψ1|K = ψ2|K = ϕ

which induce the same order

Q = ψ−1
1 (

∑
S2) = ψ−1

2 (
∑

S2)

on L. Let R be the real closure of (L,Q). Apply Theorem 2.2 to ψ1

and ψ2 to get uniquely determined extensions

σ1 : R −→ S, σ2 : R −→ S,

of ψ1 and ψ2 respectively.
But now σ1|K = σ2|K = ϕ. By the uniqueness part of Theorem

2.2 we get σ1 = σ2 and a fortiori ψ1 = ψ2.
�

Corollary 2.7. Let (K,P ) be an ordered field, R a real closure, [L : K] <∞.
Let L = K(α), f = MinPol(α |K). Then there is a bijection

{roots of f in R} −→ {extensions Q of P to L}.

Proof. If β is a root we consider the K-embedding

ϕα : L ↪→ R

such that ϕα(α) = β. Set Q := ϕ−1(
∑
R2) ordering on L extending P . �

Example 2.8. K = Q(
√

2) has 2 orderings P1 6= P2, with
√

2 ∈ P1,
√

2 /∈
P2. The Minimum Polynomial of

√
2 over Q is p(x) = x2 − 2.


