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1. Basic version of Tarski-Seidenberg

Basic version: Let (R,6) be a real closed field. We are interested in a
system of equations and inequalities (Gleichungen und Ungleichungen) for
X = (X1, . . . , Xn) of the form

S(X) :=


f1(X) �1 0
...

fk(X) �k 0

where ∀ i = 1, . . . , k �i ∈ {>, >,=, 6=} and fi(X) ∈ Q[X] or fi(X) ∈ R[X].
We say that S(X) is a system of polynomial equalities and inequalities with
coefficients in Q (or with coefficients in R) in n variables.

Theorem 1.1. (Tarski-Seidenberg Theorem: Basic Version) Let S(T ;X) be
a system with coefficients in Q in m+n variables, with T = (T1, . . . , Tm) and
X = (X1, . . . , Xn). Then there exist S1(T ), . . . , Sl(T ) systems in m variables
and coefficients in Q such that:

for every real closed field R and every t = (t1, . . . , tm) ∈ Rm the sys-
tem S(t;X) of polynomial equalities and inequalities in n variables and co-
efficients in R obtained by substituting Ti with ti in S(T ,X) for every i =
1, . . . ,m, has a solution x = (x1, . . . , xn) ∈ Rn if and only if t = (t1, . . . , tm) ∈
Rm is a solution in R for one of the systems S1(T ), . . . , Sl(T ).

Example 1.2. Let m = 3 and n = 1, so T = (T1, T2, T3) and X = X, and

S(T ,X) :=
{
T1X

2 + T2X + T3 = 0
1
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Let R be a real closed field and (t1, t2, t3) ∈ R3. Then S(t;X) has a solution
X in R if and only if

(t1 6= 0 ∧ t22 − 4t1t3 > 0) ∨ (t1 = 0 ∧ t2 6= 0) ∨ (t1 = t2 = t3 = 0)
| | |

S1(T1, T2, T3) S2(T1, T2, T3) S3(T1, T2, T3)

Concise version:

∀T [ (∃X : S(T ;X)) ⇔ (
l∨

i=1

Si(T )) ].

Remark 1.3. The proof is by induction on n.
The case n = 1 is the heart of the proof and we will show it later.
For now, let us just convince ourselves that the induction step is straight-

forward.

Assume n > 1, so

S(T ,X1, . . . , Xn) = S(T ,X1, . . . , Xn−1;Xn).

By case n = 1 we have finitely many systems S1(T ,X1, . . . , Xn−1), . . . , Sl(T ,X1, . . . , Xn−1)
such that

for any real closed field R and any (t1, . . . , tm, x1, . . . , xn−1) ∈ Rm+n−1 we
have

∃Xn : S(t1, . . . , tm, x1, . . . , xn−1;Xn) ←→
l∨

i=1

Si(t1, . . . , tm, x1, . . . , xn−1).

By induction hypothesis on n:

for every fixed i, 1 6 i 6 l, ∃ systems Sij(T ), j = 1, . . . , li such that: for
each real closed field R and each t ∈ Rm the system

Si(t;X1, . . . , Xn−1)

has a solution (x1, . . . , xn−1) ∈ Rn−1 if and only if t is a solution for one of
the systems Sij(T ); j = 1, . . . , li.

Therefore for any real closed field R and any t ∈ Rm

S(t;X1, . . . , Xn) has a solution x ∈ Rn if and only if

t is a solution to one of the systems
{
Sij(T ); i = 1, . . . , l, j = 1, . . . , li

2. Tarski Transfer Principle I

Theorem 2.1. Let S(T ,X) be a system with coefficients in Q in m + n
variables. Let (K,6) be an ordered field. Let R1, R2 be two real closed
extensions of (K,6). Then for every t ∈ Km, the system S(t,X) has a
solution x ∈ Rn

1 if and only if it has a solution x ∈ Rn
2 .
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Proof. Let t ∈ Km ⊆ Rm
1 ∩Rm

2 . Then there are systems Si(T ) (i = 1, . . . , l)
with coefficients in Q and variables T1, . . . , Tm such that

∃x ∈ R1 : S(t, x) ←→ t satisfies
l∨

i=1

Si(T ) ←→ ∃x ∈ R2 : S(t, x).

�

3. Tarski Transfer Principle II

Theorem 3.1. Let (K,6) be an ordered field, R1, R2 two real closed exten-
sions of (K,6). Then a system of polynomial equations and inequalities of
the form

S(X) :=


f1(X) �1 0
...

fk(X) �k 0

where ∀ i = 1, . . . , k �i ∈ {>, >,=, 6=} and fi(X) ∈ K[X1, . . . , Xn],

has a solution x ∈ Rn
1 ⇐⇒ it has a solution x ∈ Rn

2 .

Proof. Let t1, . . . , tm be the coefficients of the polynomials f1, . . . , fk, listed
in some fixed order. Replacing the coefficients t1, . . . , tm by variables T1, . . . , Tm

yields a system σ(T ,X) in m+ n variables with coefficients in Q (in fact in
Z) for which

σ(t1, . . . , tm, X) = S(X).

Now we can apply Tarski Transfer I. �

4. Tarski Transfer Principle III

Theorem 4.1. Suppose that R ⊆ R1 are real closed fields. Then a system
of polynomial equations and inequalities with coefficients in R

S(X) :=


f1(X) �1 0
...

fk(X) �k 0

where ∀ i = 1, . . . , k �i ∈ {>, >,=, 6=} and fi(X) ∈ R[X1, . . . , Xn]

has a solution x ∈ Rn
1 ⇐⇒ it has a solution x ∈ Rn.

Proof. Apply Tarski Transfer II with K = R2 = R. �
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5. Tarski Transfer Principle IV

Theorem 5.1. Let R be a real closed field and (F,6) an ordered field ex-
tension of R. Then a system of polynomial equations and inequalities of the
form

S(X) :=


f1(X) �1 0
...

fk(X) �k 0

where ∀ i = 1, . . . , k �i ∈ {>, >,=, 6=} and fi(X) ∈ R[X1, . . . , Xn]

has a solution x ∈ Fn ⇐⇒ it has a solution x ∈ Rn.

Proof. Let R1 be the real closure of the ordered field (F,6) and apply Tarski
Transfer III. �

6. Lang’s Homomorphism Theorem

Corollary 6.1. Suppose R and R1 are real closed fields, R ⊆ R1. Then a
system of polynomial equations of the form

S(X) :=


f1(X) = 0

... fi(x) ∈ R[X1, . . . , Xn]
fk(X) = 0

has a solution x ∈ Rn
1 if and only if it has a solution x ∈ Rn.

Proof. Apply Tarski Transfer III. �

The previous Corollary is equivalent to the following:

Theorem 6.2. (Homomorphism Theorem I). Let R and R1 be real closed
fields, R ⊆ R1. For any ideal I ⊆ R[X], if there exists an R-algebra homo-
morphism

ϕ : R[X]/I −→ R1

then there exists an R-algebra homomorphism

ψ : R[X]/I −→ R.

Proof. By Hilbert’s Basis Theorem, I is finitely generated, say I = 〈f1, . . . , fk〉,
with f1, . . . , fk ∈ R[X]. Consider the system

S(X) :=


f1(X) = 0
...

fk(X) = 0

Claim. There is a bijection

{x ∈ Rn
1 solution to S(X)} ←→ {ϕ : R[X]/I → R1 R-algebra homomorphism}
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Proof of the claim:

Let x ∈ Rn
1 be a solution to S(X); then the evaluation homomorphism

ϕ : R[X]/I −→ R1

f + I 7→ f(x)

is well-defined and is an R-algebra homomorphism.

Conversely: assume that

ϕ : R[X]/I −→ R1

is anR-algebra homomorphism. Then for e = (e1, . . . , en) and f =
∑
aeX

e =∑
ae1...enX

e1
1 . . . Xen

n ∈ R[X],

ϕ(f+I) =
∑

aeϕ(X1 +I)e1 · · ·ϕ(Xn +I)en = f(ϕ(X1 +I), . . . , ϕ(Xn +I)).

In other words set (x1, . . . , xn) ∈ Rn
1 to be defined by x1 := ϕ(X1 +

I), . . . , xn := ϕ(Xn + I), then (x1, . . . , xn) is a solution to S(X) and the
R-algebra homomorphism ϕ is indeed given by point evaluation at x =
(x1, . . . , xn) ∈ Rn

1 .

Now apply Corollary 6.1.


