REAL ALGEBRAIC GEOMETRY LECTURE NOTES (10: 20/11/09)

SALMA KUHLMANN

Contents

1. Homomorphism Theorems 1
2. Hilbert's $17^{\text {th }}$ problem 3

1. Homomorphism Theorems

Theorem 1.1. (Homomorphism Theorem I) Let $R \subseteq R_{1}$ be real closed fields and $I \subset R[\underline{x}]$ an ideal. Then
$\exists R$-alg. hom. $\varphi: \frac{R[\underline{x}]}{I} \longrightarrow R_{1} \Rightarrow \exists R$-alg. hom. $\psi: \frac{R[\underline{x}]}{I} \longrightarrow R$.
Corollary 1.2. (Homomorphism Theorem II) Suppose R and R_{1} are real closed fields, $R \subseteq R_{1}$. Let A be a finetely generated R-algebra. If there is an R-algebra homomorphism

$$
\varphi: A \longrightarrow R_{1}
$$

then there is an R-algebra homomorphism

$$
\psi: A \longrightarrow R .
$$

Proof. We want to use Homomorphism Theorem I. For this we just prove the following:

Claim 1.3. A is a finitely generated R-algebra if and only if there is a surjective R-algebra homomorphism $\vartheta: R\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right] \longrightarrow A$ (for some $n \in$ $\mathbb{N})$.

Proof.
(\Rightarrow) Let A be a finitely generated R-algebra, say with generators r_{1}, \ldots, r_{n}. Define $\vartheta: R\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right] \longrightarrow A$ by setting $\vartheta\left(\mathrm{x}_{i}\right):=r_{i}$ for every $i=$ $1, \ldots, n$, and $\vartheta(a):=a$ for every $a \in R$.
(\Leftarrow) Given a surjective homomorphism $\vartheta: R\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right] \longrightarrow A$ set $r_{i}:=$ $\vartheta\left(\mathrm{x}_{i}\right) \in A$ for every $i=1, \ldots, n$. Then $\left\{r_{1}, \ldots, r_{n}\right\}$ generate A over R.

So we get $A \cong R[\underline{\mathrm{x}}] / I$ with $I=\operatorname{ker} \vartheta$.

We can see that Homomorphism Theorem II implies T-T-III:
Let $R \subset R_{1}$ be real closed fields. $S(\underline{X})$ with coefficients in R has a solution $\underline{x} \in R_{1}^{n}$ if and only if it has a solution $\underline{x} \in R^{n}$.

We first need the following:
Proposition 1.4. Let

$$
S(\underline{\mathrm{x}}):=\left\{\begin{array}{c}
f_{1}(\underline{\mathrm{x}}) \triangleleft_{1} 0 \\
\vdots \\
f_{k}(\underline{\mathrm{x}}) \triangleleft_{k} 0
\end{array}\right.
$$

be a system with coefficients in R, where $\triangleleft_{i} \in\{\geqslant,>,=, \neq\}$. Then $S(\underline{x})$ can be written as a system of the form

$$
\sigma(\underline{\mathrm{x}}):=\left\{\begin{array}{c}
g_{1}(\underline{\mathrm{x}}) \geqslant 0 \\
\vdots \\
g_{s}(\underline{\mathrm{x}}) \geqslant 0 \\
g(\underline{\mathrm{x}}) \neq 0
\end{array}\right.
$$

for some $g_{1}, \ldots, g_{s}, g \in R[\underline{\mathrm{x}}]$.
Proof.

- Replace each equality in the original system by a pair of inequalities:

$$
f_{i}=0 \Leftrightarrow\left\{\begin{array}{c}
f_{i} \geqslant 0 \\
-f_{i} \geqslant 0
\end{array}\right.
$$

- Replace each strict inequality

$$
f_{i}>0 \text { by }\left\{\begin{array}{l}
f_{i} \geqslant 0 \\
f_{i} \neq 0
\end{array}\right.
$$

- Finally collect all inequalities $f_{i} \neq 0, i=1, \ldots, t$ as

$$
g:=\prod_{i=1}^{t} f_{i} \neq 0
$$

Now we show that Homomorphism Theorem II implies T-T-III:

Proof. Let $R \subseteq R_{1}$ and let $S(\underline{\mathrm{x}})$ be a system with coefficients in R :

$$
S(\underline{\mathrm{x}}):=\left\{\begin{array}{c}
f_{1}(\underline{\mathrm{x}}) \triangleleft_{1} 0 \\
\vdots \\
f_{k}(\underline{\mathrm{x}}) \triangleleft_{k} 0
\end{array}\right.
$$

Rewrite it as

$$
S(\underline{\mathrm{x}}):=\left\{\begin{array}{c}
f_{1}(\underline{\mathrm{x}}) \geqslant 0 \\
\vdots \\
f_{s}(\underline{\mathrm{x}}) \geqslant 0 \\
g(\underline{\mathrm{x}}) \neq 0
\end{array}\right.
$$

with $f_{i}(\underline{\mathrm{x}}), g(\underline{\mathrm{x}}) \in R\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$.
Suppose $\underline{x} \in R_{1}^{n}$ is a solution of $S(\underline{\mathrm{x}})$. Consider

$$
A:=\frac{R\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{k}, Z\right]}{\left\langle Y_{1}^{2}-f_{1}, \ldots, Y_{k}^{2}-f_{k} ; g Z-1\right\rangle},
$$

which is a finitely generated R-algebra. Consider the R-algebra homomorphism φ such that

$$
\begin{aligned}
& \varphi: A \longrightarrow R_{1} \\
& \bar{X}_{i} \mapsto x_{i} \\
& \bar{Y}_{j} \mapsto \sqrt{f_{j}(\underline{x})} \\
& \bar{Z} \mapsto 1 / g(\underline{x}) .
\end{aligned}
$$

By Homomorphism Theorem II there is an R-algebra homomorphism $\psi: A \longrightarrow R$. Then $\psi\left(\bar{X}_{1}\right), \ldots, \psi\left(\bar{X}_{n}\right)$ is the required solution in R^{n}.

2. Hilbert's $17^{\text {th }}$ Problem

Definition 2.1. Let R be a real closed field. We say that a polynomial $f(\underline{\mathbf{x}}) \in R[\underline{\mathrm{x}}]$ is positive semi-definite if $f\left(x_{1}, \ldots, x_{n}\right) \geqslant 0 \forall\left(x_{1}, \ldots, x_{n}\right) \in$ R^{n}. We write $f \geqslant 0$.

We know that

$$
f \in \sum R^{2} \Rightarrow f \geqslant 0
$$

Now take $R=\mathbb{R}$. Conversely, for any $f \in \mathbb{R}[\underline{x}]$ is it true that

$$
f \geqslant 0 \text { on } \mathbb{R}^{n} \stackrel{?}{\Rightarrow} f \in \sum \mathbb{R}(\underline{\mathrm{x}})^{2} . \quad \text { (Hilbert's } 17^{\text {th }} \text { problem). }
$$

Remark 2.2.

(1) Hilbert knew that the answer is NO to the more natural question

$$
f \in \mathbb{R}[\underline{\mathrm{x}}], f \geqslant 0 \text { on } \mathbb{R}^{n} \Rightarrow f \in \sum \mathbb{R}[\underline{\mathrm{x}}]^{2} ?
$$

(2) If $n=1$ then indeed $f \geqslant 0$ on $\mathbb{R} \Rightarrow f=f_{1}^{2}+f_{2}^{2}$.
(3) More generally Hilbert showed that:

Set $P_{d, n}:=$ the set of homogeneous polynomials of degree d in n-variables which are positive semi-definite
and set $\sum_{d, n}:=$ the subset of $P_{d, n}$ consisting of sums of squares.
Then

$$
P_{d, n}=\sum_{d, n} \Longleftrightarrow n \leqslant 2 \text { or } d=2 \text { or }(n=3 \text { and } d=4) .
$$

Note: only d even is interesting because
Lemma 2.3. $0 \neq f \in \sum \mathbb{R}[\underline{x}]^{2} \Rightarrow \operatorname{deg}(f)$ is even. More precisely, if $f=\sum_{i=1}^{k} f_{i}^{2}$, with $f_{i} \in \mathbb{R}[\underline{\mathrm{x}}] f_{i} \neq 0$, then $\operatorname{deg}(f)=2 \max \left\{\operatorname{deg}\left(f_{i}\right)\right.$: $i=1, \ldots, k\}$.

Hilbert knew that $P_{6,3} \backslash \sum_{6,3} \neq \emptyset$.
The first example was given by Motzkin 1967:

$$
m(X, Y, Z)=X^{6}+Y^{4} Z^{2}+Y^{2} Z^{4}-3 X^{2} Y^{2} Z^{2}
$$

Theorem 2.4. (Artin, 1927) Let R be a real closed field and $f \in R[\underline{\mathrm{x}}], f \geqslant 0$ on R^{n}. Then $f \in \sum R(\underline{x})^{2}$.
Proof. Set $F=R(\underline{\mathrm{x}})$ and $T=\sum F^{2}=\sum R(\underline{\mathrm{x}})^{2}$. Note that since $R(\underline{\mathrm{x}})$ is real, $\sum F^{2}$ is a proper preordering.

We want to show:

$$
f \notin T \Rightarrow \exists \underline{x} \in R^{n}: f(\underline{x})<0 .
$$

Since $f \in F \backslash T$, by Zorn's Lemma there is a preordering $P \supseteq T$ of F which is maximal for the property that $f \notin P$. Then P is an ordering of F (see proof of Crucial Lemma 2.1 of Lecture 3).

Let \leqslant_{P} be the ordering such that $\left(F, \leqslant_{P}\right)$ is an ordered field extension of the real closed field R (since R is a real closed field, it is uniquely ordered and we know that ($F, \leqslant P$) is an ordered field extension). By construction $f \notin P$ so $f(\underline{x})<0$. Consider the system

$$
S(\underline{\mathrm{x}}):\{f(\underline{\mathrm{x}})<0, \quad f(\underline{\mathrm{x}}) \in R[\underline{\mathrm{x}}] .
$$

This system has a solution \underline{X} in $F=R(\underline{\mathrm{x}})$, namely

$$
\underline{X}=\left(X_{1}, \ldots, X_{n}\right) \quad X_{i} \in R(\underline{\mathrm{x}})=F .
$$

thus by T-T-III $\exists \underline{x} \in R^{n}$ with $f(\underline{x})<0$.

