REAL ALGEBRAIC GEOMETRY LECTURE NOTES (12 Continued: 26/11/2009)

SALMA KUHLMANN

THE TARSKI-SEIDENBERG PRINCIPLE

Recall. Let R be a real closed field, $a \in R$. Define

$$sign(a) := \begin{cases} 1 & \text{if } a > 0, \\ 0 & \text{if } a = 0, \\ -1 & \text{if } a < 0. \end{cases}$$

The Tarski-Seidenberg Principle is the following result.

Theorem 1. Let $f_i(\underline{T},X) = h_{i,m_i}(\underline{T})X^{m_i} + \ldots + h_{i,0}(\underline{T})$ for $i=1,\ldots,s$ be a sequence of polynomials in n+1 variables $(\underline{T}=(T_1,\ldots,T_n),X)$ with coefficients in \mathbb{Z} . Let ϵ be a function from $\{1,\ldots,s\}$ to $\{-1,0,1\}$. Then there exists a finite boolean combination $B(\underline{T}) := S_1(\underline{T}) \vee \ldots \vee S_p(\underline{T})$ of polynomial equations and inequalities in the variables T_1,\ldots,T_n with coefficients in \mathbb{Z} such that for every real closed field \mathbb{R} and for every $\underline{t} \in \mathbb{R}^n$, the system

$$\begin{cases} sign(f_1(\underline{t}, X)) = \epsilon(1) \\ \vdots \\ sign(f_s(\underline{t}, X)) = \epsilon(s) \end{cases}$$

has a solution $x \in R$ if and only if $B(\underline{t})$ holds true in R.

Notation I. Let $f_1(X), \ldots, f_s(X)$ be a sequence of polynomials in R[X]. Let $x_1 < \ldots < x_N$ be the roots in R of all f_i that are not identically zero. Set $x_0 := -\infty$, $x_{N+1} := +\infty$

Remark 1. Let
$$m := max(degf_i, i = 1, ..., s)$$
. Then $N \leq sm$. Set $I_k :=]x_k, x_{k+1}[$, $k = 0, ..., N$

Remark 2. $sign(f_i(x))$ is constant on I_k , for each $i \in 1, ..., s$, for each $k \in 0, ..., N$.

Set
$$sign(f_i(I_k)) := sign(f_i(x)), x \in I_k$$

Notation II. Let $SIGN_R(f_1,...,f_s)$ be the matrix with s rows and 2N+1 columns whose i^{th} row (for $i = \{1,...,s\}$) is

$$sign(f_i(I_0)), sign(f_i(x_1)), sign(f_i(I_1)), \dots, sign(f_i(x_N)), sign(f_i(I_N)).$$

i.e. $SIGN_R(f_1,...,f_s)$ is an $s\times(2N+1)$ matrix with coefficients in $\{-1,0,1\}$ and

$$SIGN_R(f_1,...,f_s) := \begin{pmatrix} signf_1(I_0) & signf_1(x_1) & \dots & signf_1(x_N) & signf_1(I_N) \\ signf_2(I_0) & signf_2(x_1) & \dots & signf_2(x_N) & signf_2(I_N) \\ \vdots & & \vdots & & \vdots & & \vdots \\ signf_s(I_0) & signf_s(x_1) & \dots & signf_s(x_N) & signf_s(I_N) \end{pmatrix}$$

Remark 3. Let $f_1, \ldots, f_s \in R[X]$ and $\epsilon : \{1, \ldots, s\} \to \{-1, 0, +1\}$. The system

$$\begin{cases} sign(f_1(X)) = \epsilon(1) \\ \vdots \\ sign(f_s(X)) = \epsilon(s) \end{cases}$$

has a solution $x \in R$ if and only if one column of $SIGN_R(f_1, \ldots, f_s)$ is precisely

the matrix $\begin{bmatrix} \epsilon(1) \\ \vdots \\ \epsilon(s) \end{bmatrix}$.

Notation III. Let $M_{P\times Q}:=$ the set of $P\times Q$ matrices with coefficients in $\{-1,0,+1\}$.

Set $W_{s,m}$:= the disjoint union of $M_{s\times(2l+1)}$, for $l=0,\ldots,sm$.

Notation IV. Let $\epsilon: \{1, \ldots, s\} \to \{-1, 0, 1\}$. Set

$$W(\epsilon) = \{ M \in W_{s,m} : one \ column \ of \ M \ is \ \begin{bmatrix} \epsilon(1) \\ \vdots \\ \epsilon(s) \end{bmatrix} \} \subseteq W_{s,m}$$

Lemma 2. (Reformulation of remark 3 using notation IV) Let $\epsilon: \{1, \ldots, s\} \to \{-1, 0, +1\}$, R real closed field and $f_1(X), \ldots, f_s(X) \in R[X]$ of degree $\leq m$. Then the system

$$\begin{cases} sign(f_1(X)) = \epsilon(1) \\ \vdots \\ sign(f_s(X)) = \epsilon(s) \end{cases}$$

has a solution $x \in R$ if and only if $SIGN_R(f_1, ..., f_s) \in W(\epsilon)$.

By lemma 2, we see that the proof of the Tarski Transfer (theorem 1) reduces to showing the following proposition:

(Main) Proposition 3. Let $f_i(\underline{T},X) := h_{i,m_i}(\underline{T})X^{m_i} + \ldots + h_{i,0}(\underline{T})$ for $i=1,\ldots,s$ be a sequence of polynomials in n+1 variables with coefficients in \mathbb{Z} , and let $m:=\max\{m_i|i=1,\ldots,s\}$. Let W' be a subset of $W_{s,m}$. Then there exists a boolean combination $B(\underline{T}) = S_1(\underline{T}) \vee \ldots \vee S_p(\underline{T})$ of polynomial equations and inequalities in the variables \underline{T} with coefficients in \mathbb{Z} , such that, for every real closed field \mathbb{R} and every $\underline{t} \in \mathbb{R}^n$, we have

$$SIGN_{R}(f_{1}(\underline{t},X),\ldots,f_{s}(\underline{t},X)\in W^{'}\Leftrightarrow B(\underline{t}) \text{ holds true in R.}$$

Proof. The proof will follow by induction from the next main lemma, where we will show that $SIGN_R(f_1,\ldots,f_s)$ is completely determined by the " $SIGN_R$ " of a (possibly) longer but simpler sequence of polynomials, i.e. $SIGN_R(f_1,\ldots,f_{s-1},f_s',g_1,\ldots,g_s)$, where $f_s'=$ the derivative of f_s , and g_1,\ldots,g_s are the remainders of the euclidean division of f_s by f_1,\ldots,f_{s-1},f_s' , respectively.

First we will state and prove the lemma and then prove the proposition.