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Main Lemma. For any real closed field R and every sequence of polynomi-
als f1,...,fs € R[X] of degrees < m, with f; nonconstant and none of the
f1,.-., fs—1 identically zero, we have

SIGNg(f1,...,fs) € Wy is completely determined by
SIGNR(fl,...,fs,1,f;7gl,...,gs) € Was m, where fsl is the derivative of f,,
and g1, ..., gs are the remainders of the euclidean division of fs by f1,..., fs_1, fS/,
respectively.

Equivalently, the map ¢ : Wags ,m — Wi,

SIGNR(fi,-- s fsets far g1y gs) — SIGNR(f1,..., fs)
is well defined.

In other words, for any (fi,..., fs), (Fi,..., Fs) € R[X],
SIGNR(fl)'"7fS—1afs7gl7"'7gs) = SIGNR(Flv"'7F€—1aEs7G1a'~'7Gs)
= SIGNR(fl,...,fS) = SIGNR(Fl,...,FS).

Proof. Assume w = SIGNg(f1,..., fs—1, f;,gl, ..., 9s) is given.
Let x1 < ... < xn, with N < 2sm, be the roots in R of those polyno-

mials among fi,..., fs_1, f;, gi,--.,gs that are not identically zero. Extract
from these the subsequence z;, < ... < z;,, of the roots of the polynomials
fi,..., fs—1, fs- By convention, let x;, := 29 = —00 ; xj,,,, = Ty41 = +00.

Note that the sequence z;, < ... < x;,, depends only on w.
For £k = 1,..., M one of the polynomials f,.. .,fs_l,f; vanishes at x;,.
This allows to choose a map (determined by w)
0:{1,...,M} = {1,...,s}
such that  f(zs,) = gor) (@i, )
(This goes via polynomial division fs = fo(x)qa(k) +9go(k), where foq)(zs,,) = 0).

Claim I. The existance of a root of f, in an interval ]z;, ,x;, . [, for k =
0,...,M depends only on w.
Proof of Claim I.
Case 1: fs has a root in | — oo, z;, [ (if M # 0) if and only if
S’LgTL(f;( } - OO,I‘l[ ))Slgn(ge(l) (1’21)) - ]-7



equivalently iff
SZgn(fs( } - OO,$1[ )) = Szgnfs(x“)

(=) We want to show that if sign(f;( ] — o0, 21] ) = signfs(zi,),
then fs has a root in | — 0o, zy, [.
Suppose on contradiction that fs has no root in | — 0o, z;, [, then signf

must be constant and nonzero on | — 0o, x;, |, so we get
0 # signfs( ] — oo, x1] ) = signfs(] — 00, ;,] ) = signfs(wi,) =
SZgnfs( ] - 007561[ )

= signfs( ] —oco,x1] ) = signf.( ] — oo, z1[ ), a contradiction [because
on]—oo,—D[: signf(z) =(—1)"sign(d) for f =dax™ + ...+ dy and
signf (z) = (=1)™ Lsign(md) for f = mdz™ 1+ ... |

see Corollary 2.1 of lecture 6 (05/11/09)]

(<) Assume that fs has a root (say) = € | — oo, 2y, [.
Note that signfs(x;,) #0 [otherwise fs(x) = f(zs,) =0, so (by Rolle’s
theorem) f. has a root in |z, z;, [ and only possibility is 1 € ]z, z;, [ (by
our listing), but then zy = z;,, a contradiction]
Note also that f; cannot have two roots (counting multiplicity) in

| — 00, 4, | [otherwise f+ will be forced to have a root in | — oo, z;, [, a
contradiction as before} .
So

—signfs( ] — o0, 2] ) = signfs( lz, x4, ] ) = signfs(zi, ),

also (by same argument as before)

fsignfs( | — o0, 2] ) = szgnf;( | — 00, 21] ),

therefore, we get
signf;( | —o00,21[ ) = signfs(wz;,). O (case 1)

Case 2: Similarly one proves that: fs has a root in |x;,,, +oo[ (if M # 0) if
and only if

sign(f,(Jzw,+o0[)).sign(gocan) (@iy,)) = —1,
(i.e. iff signf,( ]xy,+ool ) = —signfs(zs,, ) # O).

Case 3: f, has a root in |z;,, x4, [, for k=1,..., M — 1, if and only if
sign(go (i) -sign(gors1) (Tinsr)) = —1,
equivalently iff
signfs(xi,) = —signfs(Ti,.,)-



(Proof is clear because if f, has a root in |z;,, x;,,, [, then this root is of
multipilicty 1 and therefore a sign change must occur.)

Case 4: f, has exactly one root in | — oo, +oo[ if M = 0. O (claim I)

Claim II. SIGNg(f1,..., fs) depends only on w.

Proof of Claim II.

Notation: Let y; < ... < yr, with L < sm, be the roots in R of the
polynomials fi,..., fs. As before, let yo := —o0, yr4+1 := +00.

Set Iy, := (yx, Yr+1), k=0,..., L.

Define
p:{0,....,L+1} — {0,.... M +1}U{(k,k+1) | k=0,...,M}
I k ?f YL = Tiy,
(k,k+1) if y €],z [

Note that L and p depends only on w. So, to prove claim II it is enough to
show that STIGNg(f1,..., fs) depends only on p and w.

sign f1(1o) signfi(y1) ... signfi(yr) signfi(IL)

Also, SIGNg(f1, ) f2) == : : : :
0 SIONRU ooV = o \(Ty) signfan () . signfos(ys)  signfor(Ts)
signfs(lo)  signfs(y1) ...  signfs(yr)  signfs(IL)

is an sx(2L 4 1) matrix with coefficients in {—1,0,+1}.

Case1: j=1,...,5s—1
For 1 € {0,...,L+ 1} we have

o if p(l) =k = sign(fj(yl)) = sign(fj(:zci,c))7
o if p(l) = (k,k+1) = sz’gn(fj(yl)) = sz'gn(fj( 1Ty, iy | ))

So, sign(fj(yl)) is known from w and p, for all j = 1,...,s — 1 and | €
{0,...,L+1}.
We also have

e ifp(l)=kor (k,k+1)= sign(fj( lyis i1 )) = sign(fj( 1%y, iy [ ))
So, sign(f;( 1yi, yi41[)) is known from w and p, forall j =1,...,5 —1 and

le{0,...,L+1}.
Thus one can reconstruct the first s — 1 rows of SIGNg(f1, ..., fs) from w.

Case 2: j=s
For 1 € {0,...,L+ 1} we have



o ifp(l)=k= sign(fs(yl)) = sign(ge(k) (x’bk))7
o if p(I) = (k,k + 1) = sign(fs(y)) =0.

So, sign(fs(y)) is known from w and p, for all I € {0,...,L + 1} and
therefore can also be reconstructed from w.

Now remains the most delicate case that concerns sign(fs( lui, yisa| )) :
For 1 € {0,...,L + 1} we have

o if1£0, pl) =k =

sign (go) (x4, )) if it is # 0,
sign(f;( 1Ty, Tigy o [ )) otherwise.

sign(fs(Jyis yis1] ) = {

[This is because (p(l) =k if y; = ;,, so):
- if go(ry(w4,,) = fs(®s,) # 0, then by continuity sign is constant, and
- if goy (4),) = fs(24),) = 0, then on |z, , 24, | -

fo> 0= fo(wi,) < fsly) for y < zpp1, so fi(y) >0,
fo 0= —fo(wi,) < —fsly) for y < @41, s0 fs(y) <0

[using lemma (Poizat): In a real closed ordered field, if P is a nonconstant

polynomial s.t. P* >0 on [a,b], a < b, then P(a) < P(b) ]}
o if! 7£ Oa p(l) = (k’k+1) = Sign(fs( ]yl’yl-O-l[ )) = szgn(f;( ]xik7xik+1[ ))
[We argue as follows (noting that p(l) = (k,k + 1) if y; €lzs,, @iy, [ ):

sign(fs( lyis v )) is constant so at any rate is equal to sz’gn(fs( 1y, iy )),
now using the fact that fs(y;) = 0 and the same lemma (stated above) we
get, for any a € Jy;, z;, [ :

{f; > 0= foly) < fs(a), so fs(a) >0,

fs 0= —fs(y1) < —fs(a), so fs(a) <O

. . ’
i.e. fs has same sign as fs.}

o if I =0= sign(fs(]—o0,;1[)) = sign(f;( ] —00,z1])) (as before). O



