REAL ALGEBRAIC GEOMETRY LECTURE NOTES (13: 01/12/2009)

SALMA KUHLMANN

THE TARSKI-SEIDENBERG PRINCIPLE

Main Lemma. For any real closed field R and every sequence of polynomials $f_1, \ldots, f_s \in R[X]$ of degrees $\leq m$, with f_s nonconstant and none of the f_1, \ldots, f_{s-1} identically zero, we have

 $SIGN_R(f_1, \ldots, f_s) \in W_{s,m}$ is completely determined by

 $SIGN_R(f_1,\ldots,f_{s-1},f'_s,g_1,\ldots,g_s) \in W_{2s,m}$, where f'_s is the derivative of f_s , and g_1,\ldots,g_s are the remainders of the euclidean division of f_s by f_1,\ldots,f_{s-1},f'_s , respectively.

Equivalently, the map $\varphi: W_{2s,m} \longrightarrow W_{s,m}$

$$SIGN_R(f_1,\ldots,f_{s-1},f'_s,g_1,\ldots,g_s) \longmapsto SIGN_R(f_1,\ldots,f_s)$$

is well defined.

In other words, for any $(f_1, ..., f_s)$, $(F_1, ..., F_s) \in R[X]$, $SIGN_R(f_1, ..., f_{s-1}, f'_s, g_1, ..., g_s) = SIGN_R(F_1, ..., F_{s-1}, F'_s, G_1, ..., G_s)$ $\Rightarrow SIGN_R(f_1, ..., f_s) = SIGN_R(F_1, ..., F_s).$

Proof. Assume $w = SIGN_R(f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s)$ is given.

Let $x_1 < \ldots < x_N$, with $N \leq 2sm$, be the roots in R of those polynomials among $f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s$ that are not identically zero. Extract from these the subsequence $x_{i_1} < \ldots < x_{i_M}$ of the roots of the polynomials $f_1, \ldots, f_{s-1}, f'_s$. By convention, let $x_{i_0} := x_0 = -\infty$; $x_{i_{M+1}} := x_{N+1} = +\infty$.

Note that the sequence $x_{i_1} < \ldots < x_{i_M}$ depends only on w.

For k = 1, ..., M one of the polynomials $f_1, ..., f_{s-1}, f'_s$ vanishes at x_{i_k} . This allows to choose a map (determined by w)

 $\theta: \{1, \dots, M\} \to \{1, \dots, s\}$ such that $f_s(x_{i_k}) = g_{\theta(k)}(x_{i_k})$

(This goes via polynomial division $f_s = f_{\theta(k)}q_{\theta(k)} + g_{\theta(k)}$, where $f_{\theta(k)}(x_{i_k}) = 0$).

Claim I. The existance of a root of f_s in an interval $]x_{i_k}, x_{i_{k+1}}[$, for $k = 0, \ldots, M$ depends only on w.

Proof of Claim I.

<u>Case 1:</u> f_s has a root in $] - \infty, x_{i_1}[$ (if $M \neq 0$) if and only if $sign(f'_s(] - \infty, x_1[]).sign(g_{\theta(1)}(x_{i_1})) = 1,$

equivalently iff
$$sign(f'_{s}(] - \infty, x_{1}[)) = signf_{s}(x_{i_{1}}).$$

 $\begin{array}{l} (\Rightarrow) \text{ We want to show that if } sign(f'_s(\] - \infty, x_1[\)) = signf_s(x_{i_1}), \\ \text{ then } f_s \text{ has a root in }] - \infty, x_{i_1}[. \\ \text{ Suppose on contradiction that } f_s \text{ has no root in }] - \infty, x_{i_1}[, \text{ then } signf_s must be constant and nonzero on }] - \infty, x_{i_1}], \text{ so we get} \\ 0 \neq signf_s(\] - \infty, x_1[\) = signf_s(\] - \infty, x_{i_1}]) = signf_s(x_{i_1}) = signf_s'(\] - \infty, x_1[\) \\ \Rightarrow signf_s(\] - \infty, x_1[\) = signf_s'(\] - \infty, x_1[\), \text{ a contradiction } \left[\text{because} \\ \text{ on }] - \infty, -D[: \ signf(x) = (-1)^m sign(d) \text{ for } f = dx^m + \ldots + d_0 \text{ and} \\ signf'(x) = (-1)^{m-1} sign(md) \text{ for } f' = mdx^{m-1} + \ldots , \\ \text{ see Corollary 2.1 of lecture } 6 (05/11/09) \right]. \end{array}$

(\Leftarrow) Assume that f_s has a root (say) $x \in] -\infty, x_{i_1}[$.

Note that $sign f_s(x_{i_1}) \neq 0$ [otherwise $f_s(x) = f(x_{i_1}) = 0$, so (by Rolle's theorem) f'_s has a root in $]x, x_{i_1}[$ and only possibility is $x_1 \in]x, x_{i_1}[$ (by our listing), but then $x_1 = x_{i_1}$, a contradiction].

Note also that f_s cannot have two roots (counting multiplicity) in $] - \infty, x_{i_1}[$ [otherwise f'_s will be forced to have a root in $] - \infty, x_{i_1}[$, a contradiction as before].

 \mathbf{So}

$$-signf_s(] - \infty, x[) = signf_s(]x, x_{i_1}]) = signf_s(x_{i_1}),$$

also (by same argument as before)

$$-signf_{s}(] - \infty, x[) = signf'_{s}(] - \infty, x_{1}[),$$

therefore, we get

$$signf'_{s}(] - \infty, x_{1}[) = signf_{s}(x_{i_{1}}).$$
 \Box (case 1)

<u>Case 2:</u> Similarly one proves that: f_s has a root in $]x_{i_M}, +\infty[$ (if $M \neq 0$) if and only if

$$sign(f'_{s}(]x_{N}, +\infty[)).sign(g_{\theta(M)}(x_{i_{M}})) = -1,$$

(i.e. iff $signf'_{s}(]x_{N}, +\infty[) = -signf_{s}(x_{i_{M}}) \neq 0$).

<u>Case 3:</u> f_s has a root in $]x_{i_k}, x_{i_{k+1}}[$, for $k = 1, \ldots, M - 1$, if and only if $sign(g_{\theta(k)}(x_{i_k})).sign(g_{\theta(k+1)}(x_{i_{k+1}})) = -1$, equivalently iff $signf_s(x_{i_k}) = -signf_s(x_{i_{k+1}}).$

(Proof is clear because if f_s has a root in $]x_{i_k}, x_{i_{k+1}}[$, then this root is of multipilicity 1 and therefore a sign change must occur.)

<u>Case 4:</u> f_s has exactly one root in $] - \infty, +\infty[$ if M = 0. \Box (claim I)

Claim II. $SIGN_R(f_1, \ldots, f_s)$ depends only on w. Proof of Claim II. Notation: Let $y_1 < \ldots < y_L$, with $L \le sm$, be the roots in R of the polynomials f_1, \ldots, f_s . As before, let $y_0 := -\infty, y_{L+1} := +\infty$. Set $I_k := (y_k, y_{k+1}), \ k = 0, \ldots, L$.

Define

$$\begin{split} \rho \ : \ \{0, \dots, L+1\} & \longrightarrow \ \{0, \dots, M+1\} \cup \{(k, k+1) \mid k = 0, \dots, M\} \\ l & \longmapsto \ \begin{cases} k & \text{if } y_l = x_{i_k}, \\ (k, k+1) & \text{if } y_l \in]x_{i_k}, x_{i_{k+1}}[. \end{split}$$

Note that L and ρ depends only on w. So, to prove claim II it is enough to show that $SIGN_R(f_1, \ldots, f_s)$ depends only on ρ and w.

$$\text{Also, } SIGN_R(f_1, \dots, f_s) := \begin{pmatrix} signf_1(I_0) & signf_1(y_1) & \dots & signf_1(y_L) & signf_1(I_L) \\ \vdots & \vdots & \vdots & \vdots \\ signf_{s-1}(I_0) & signf_{s-1}(y_1) & \dots & signf_{s-1}(y_L) & signf_{s-1}(I_L) \\ signf_s(I_0) & signf_s(y_1) & \dots & signf_s(y_L) & signf_s(I_L) \end{pmatrix}$$

is an $s \times (2L+1)$ matrix with coefficients in $\{-1, 0, +1\}$.

Case 1: $j = 1, \dots, s - 1$ For $l \in \{0, \dots, L+1\}$ we have

- if $\rho(l) = k \Rightarrow sign(f_j(y_l)) = sign(f_j(x_{i_k})),$
- if $\rho(l) = (k, k+1) \Rightarrow sign(f_j(y_l)) = sign(f_j(]x_{i_k}, x_{i_{k+1}}[)).$

So, $sign(f_j(y_l))$ is known from w and ρ , for all $j = 1, \ldots, s - 1$ and $l \in \{0, \ldots, L+1\}$. We also have

• if $\rho(l) = k$ or $(k, k+1) \Rightarrow sign(f_j(]y_l, y_{l+1}[)) = sign(f_j(]x_{i_k}, x_{i_{k+1}}[)).$

So, $sign(f_j([]y_l, y_{l+1}[]))$ is known from w and ρ , for all j = 1, ..., s - 1 and $l \in \{0, ..., L + 1\}$.

Thus one can reconstruct the first s - 1 rows of $SIGN_R(f_1, ..., f_s)$ from w.

Case 2: j = sFor $l \in \{0, \dots, L+1\}$ we have

- if $\rho(l) = k \Rightarrow sign(f_s(y_l)) = sign(g_{\theta(k)}(x_{i_k})),$
- if $\rho(l) = (k, k+1) \Rightarrow sign(f_s(y_l)) = 0.$

So, $sign(f_s(y_l))$ is known from w and ρ , for all $l \in \{0, \ldots, L+1\}$ and therefore can also be reconstructed from w.

Now remains the most delicate case that concerns $sign(f_s(]y_l, y_{l+1}[))$: For $l \in \{0, ..., L+1\}$ we have

• if
$$l \neq 0$$
, $\rho(l) = k \Rightarrow$

$$sign(f_{s}(]y_{l}, y_{l+1}[)) = \begin{cases} sign(g_{\theta(k)}(x_{i_{k}})) & \text{if it is } \neq 0, \\ sign(f_{s}^{'}(]x_{i_{k}}, x_{i_{k+1}}[)) & \text{otherwise.} \end{cases}$$

This is because $(\rho(l) = k \text{ if } y_l = x_{i_k}, \text{ so})$:

- if $g_{\theta(k)}(x_{i_k}) = f_s(x_{i_k}) \neq 0$, then by continuity sign is constant, and - if $g_{\theta(k)}(x_{i_k}) = f_s(x_{i_k}) = 0$, then on $]x_{i_k}, x_{i_{k+1}}[$:

$$\begin{cases} f'_s \ge 0 \Rightarrow f_s(x_{i_k}) < f_s(y) \text{ for } y < x_{k+1}, \text{ so } f_s(y) > 0, \\ f'_s \le 0 \Rightarrow -f_s(x_{i_k}) < -f_s(y) \text{ for } y < x_{k+1}, \text{ so } f_s(y) < 0 \end{cases}$$

[using lemma (Poizat): In a real closed ordered field, if P is a nonconstant polynomial s.t. $P' \ge 0$ on [a, b], a < b, then P(a) < P(b)].]

• if $l \neq 0$, $\rho(l) = (k, k+1) \Rightarrow sign(f_s(]y_l, y_{l+1}[)) = sign(f'_s(]x_{i_k}, x_{i_{k+1}}[)).$

We argue as follows (noting that $\rho(l) = (k, k+1)$ if $y_l \in]x_{i_k}, x_{i_{k+1}}[$):

 $sign(f_s(]y_l, y_{l+1}[))$ is constant so at any rate is equal to $sign(f_s(]y_l, x_{i_{k+1}}[))$, now using the fact that $f_s(y_l) = 0$ and the same lemma (stated above) we get, for any $a \in]y_l, x_{i_{k+1}}[$:

$$\begin{cases} f'_s \ge 0 \Rightarrow f_s(y_l) < f_s(a), \text{ so } f_s(a) > 0, \\ f'_s \le 0 \Rightarrow -f_s(y_l) < -f_s(a), \text{ so } f_s(a) < 0 \end{cases}$$

i.e. f_s has same sign as f'_s .

• if $l = 0 \Rightarrow sign(f_s(] - \infty, y_1[)) = sign(f'_s(] - \infty, x_1[))$ (as before). \Box