# REAL ALGEBRAIC GEOMETRY LECTURE NOTES (13: 01/12/2009) 

SALMA KUHLMANN

## THE TARSKI-SEIDENBERG PRINCIPLE

Main Lemma. For any real closed field $R$ and every sequence of polynomials $f_{1}, \ldots, f_{s} \in R[X]$ of degrees $\leq m$, with $f_{s}$ nonconstant and none of the $f_{1}, \ldots, f_{s-1}$ identically zero, we have
$S I G N_{R}\left(f_{1}, \ldots, f_{s}\right) \in W_{s, m}$ is completely determined by
$S I G N_{R}\left(f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}\right) \in W_{2 s, m}$, where $f_{s}^{\prime}$ is the derivative of $f_{s}$, and $g_{1}, \ldots, g_{s}$ are the remainders of the euclidean division of $f_{s}$ by $f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}$, respectively.
Equivalently, the map $\varphi: W_{2 s, m} \longrightarrow W_{s, m}$

$$
\operatorname{SIGN}_{R}\left(f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}\right) \longmapsto S I G N_{R}\left(f_{1}, \ldots, f_{s}\right)
$$

is well defined.
In other words, for any $\left(f_{1}, \ldots, f_{s}\right),\left(F_{1}, \ldots, F_{s}\right) \in R[X]$,
$\operatorname{SIGN}_{R}\left(f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}\right)=\operatorname{SIGN}_{R}\left(F_{1}, \ldots, F_{s-1}, F_{s}^{\prime}, G_{1}, \ldots, G_{s}\right)$
$\Rightarrow \operatorname{SIGN}_{R}\left(f_{1}, \ldots, f_{s}\right)=\operatorname{SIGN}_{R}\left(F_{1}, \ldots, F_{s}\right)$.
Proof. Assume $w=S I G N_{R}\left(f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}\right)$ is given.
Let $x_{1}<\ldots<x_{N}$, with $N \leq 2 s m$, be the roots in R of those polynomials among $f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}$ that are not identically zero. Extract from these the subsequence $x_{i_{1}}<\ldots<x_{i_{M}}$ of the roots of the polynomials $f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}$. By convention, let $x_{i_{0}}:=x_{0}=-\infty ; x_{i_{M+1}}:=x_{N+1}=+\infty$.

Note that the sequence $x_{i_{1}}<\ldots<x_{i_{M}}$ depends only on $w$.
For $k=1, \ldots, M$ one of the polynomials $f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}$ vanishes at $x_{i_{k}}$. This allows to choose a map (determined by $w$ )

```
        \(\theta:\{1, \ldots, M\} \rightarrow\{1, \ldots, s\}\)
    such that \(f_{s}\left(x_{i_{k}}\right)=g_{\theta(k)}\left(x_{i_{k}}\right)\)
```

(This goes via polynomial division $f_{s}=f_{\theta(k)} q_{\theta(k)}+g_{\theta(k)}$, where $f_{\theta(k)}\left(x_{i_{k}}\right)=0$ ).
Claim I. The existance of a root of $f_{s}$ in an interval $] x_{i_{k}}, x_{i_{k+1}}$, for $k=$ $0, \ldots, M$ depends only on $w$.
Proof of Claim I.
Case 1: $f_{s}$ has a root in $]-\infty, x_{i_{1}}[($ if $M \neq 0)$ if and only if

$$
\operatorname{sign}\left(f_{s}^{\prime}(]-\infty, x_{1}[)\right) \cdot \operatorname{sign}\left(g_{\theta(1)}\left(x_{i_{1}}\right)\right)=1,
$$

$$
\begin{aligned}
& \text { equivalently iff } \\
& \qquad \operatorname{sign}\left(f_{s}^{\prime}(]-\infty, x_{1}[)\right)=\operatorname{sign} f_{s}\left(x_{i_{1}}\right) .
\end{aligned}
$$

$(\Rightarrow)$ We want to show that if $\operatorname{sign}\left(f_{s}^{\prime}(]-\infty, x_{1}[)\right)=\operatorname{sign} f_{s}\left(x_{i_{1}}\right)$,
then $f_{s}$ has a root in $]-\infty, x_{i_{1}}[$.
Suppose on contradiction that $f_{s}$ has no root in $]-\infty, x_{i_{1}}\left[\right.$, then $\operatorname{sign} f_{s}$ must be constant and nonzero on $\left.]-\infty, x_{i_{1}}\right]$, so we get
$\left.\left.0 \neq \operatorname{signf}_{s}(]-\infty, x_{1}[)=\operatorname{signf}_{s}(]-\infty, x_{i_{1}}\right]\right)=\operatorname{signf} f_{s}\left(x_{i_{1}}\right)=$ $\operatorname{signf} f_{s}^{\prime}(]-\infty, x_{1}[)$
$\Rightarrow \operatorname{signf}_{s}(]-\infty, x_{1}[)=\operatorname{signf}_{s}^{\prime}(]-\infty, x_{1}[)$, a contradiction [because on $]-\infty,-D\left[: \operatorname{sign} f(x)=(-1)^{m} \operatorname{sign}(d)\right.$ for $f=d x^{m}+\ldots+d_{0}$ and $\operatorname{sign} f^{\prime}(x)=(-1)^{m-1} \operatorname{sign}(m d)$ for $f^{\prime}=m d x^{m-1}+\ldots$,
see Corollary 2.1 of lecture $6(05 / 11 / 09)$ ].
$(\Leftarrow)$ Assume that $f_{s}$ has a root (say) $\left.x \in\right]-\infty, x_{i_{1}}[$.
Note that $\operatorname{sign}_{s_{s}}\left(x_{i_{1}}\right) \neq 0\left[\right.$ otherwise $f_{s}(x)=f\left(x_{i_{1}}\right)=0$, so (by Rolle's theorem) $f_{s}^{\prime}$ has a root in $] x, x_{i_{1}}$ [ and only possibility is $\left.x_{1} \in\right] x, x_{i_{1}}$ [ (by our listing), but then $x_{1}=x_{i_{1}}$, a contradiction].
Note also that $f_{s}$ cannot have two roots (counting multiplicity) in $]-\infty, x_{i_{1}}\left[\right.$ otherwise $f_{s}^{\prime}$ will be forced to have a root in $]-\infty, x_{i_{1}}[$, a contradiction as before].
So

$$
\left.\left.-\operatorname{sign}_{s}(]-\infty, x[)=\operatorname{signf}_{s}(] x, x_{i_{1}}\right]\right)=\operatorname{sign} f_{s}\left(x_{i_{1}}\right)
$$

also (by same argument as before)

$$
-\operatorname{sign}_{s}(]-\infty, x[)=\operatorname{sign} f_{s}^{\prime}(]-\infty, x_{1}[)
$$

therefore, we get

$$
\begin{equation*}
\operatorname{signf}_{s}^{\prime}(]-\infty, x_{1}[)=\operatorname{sign} f_{s}\left(x_{i_{1}}\right) \tag{case1}
\end{equation*}
$$

Case 2: Similarly one proves that: $f_{s}$ has a root in $] x_{i_{M}},+\infty[$ (if $M \neq 0)$ if and only if

$$
\operatorname{sign}\left(f_{s}^{\prime}(] x_{N},+\infty[)\right) \cdot \operatorname{sign}\left(g_{\theta(M)}\left(x_{i_{M}}\right)\right)=-1,
$$

(i.e. iff $\left.\operatorname{signf} f_{s}^{\prime}(] x_{N},+\infty[)=-\operatorname{sign} f_{s}\left(x_{i_{M}}\right) \neq 0\right)$.

Case 3: $f_{s}$ has a root in $] x_{i_{k}}, x_{i_{k+1}}[$, for $k=1, \ldots, M-1$, if and only if $\operatorname{sign}\left(g_{\theta(k)}\left(x_{i_{k}}\right)\right) \cdot \operatorname{sign}\left(g_{\theta(k+1)}\left(x_{i_{k+1}}\right)\right)=-1$,
equivalently iff

$$
\operatorname{signf}_{s}\left(x_{i_{k}}\right)=-\operatorname{signf}_{s}\left(x_{i_{k+1}}\right)
$$

(Proof is clear because if $f_{s}$ has a root in $] x_{i_{k}}, x_{i_{k+1}}[$, then this root is of multipilicty 1 and therefore a sign change must occur.)

Case 4: $f_{s}$ has exactly one root in $]-\infty,+\infty[$ if $M=0$.
$\square($ claim I)
Claim II. $S I G N_{R}\left(f_{1}, \ldots, f_{s}\right)$ depends only on $w$.
Proof of Claim II.
Notation: Let $y_{1}<\ldots<y_{L}$, with $L \leq s m$, be the roots in R of the polynomials $f_{1}, \ldots, f_{s}$. As before, let $y_{0}:=-\infty, y_{L+1}:=+\infty$.
Set $I_{k}:=\left(y_{k}, y_{k+1}\right), k=0, \ldots, L$.
Define

$$
\begin{aligned}
\rho:\{0, \ldots, L+1\} & \longrightarrow\{0, \ldots, M+1\} \cup\{(k, k+1) \mid k=0, \ldots, M\} \\
l & \longmapsto \begin{cases}k & \text { if } y_{l}=x_{i_{k}}, \\
(k, k+1) & \text { if } \left.y_{l} \in\right] x_{i_{k}}, x_{i_{k+1}}[.\end{cases}
\end{aligned}
$$

Note that $L$ and $\rho$ depends only on $w$. So, to prove claim II it is enough to show that $S I G N_{R}\left(f_{1}, \ldots, f_{s}\right)$ depends only on $\rho$ and $w$.

Also, $S I G N_{R}\left(f_{1}, \ldots, f_{s}\right):=\left(\begin{array}{ccccc}\operatorname{sign} f_{1}\left(I_{0}\right) & \operatorname{sign} f_{1}\left(y_{1}\right) & \ldots & \operatorname{sign} f_{1}\left(y_{L}\right) & \operatorname{sign} f_{1}\left(I_{L}\right) \\ \vdots & \vdots & & \vdots & \vdots \\ \operatorname{sign} f_{s-1}\left(I_{0}\right) & \operatorname{sign} f_{s-1}\left(y_{1}\right) & \ldots & \operatorname{signf}_{s-1}\left(y_{L}\right) & \operatorname{sign} f_{s-1}\left(I_{L}\right) \\ \operatorname{sign} f_{s}\left(I_{0}\right) & \operatorname{signf} f_{s}\left(y_{1}\right) & \ldots & \operatorname{sign} f_{s}\left(y_{L}\right) & \operatorname{sign} f_{s}\left(I_{L}\right)\end{array}\right)$
is an $s \times(2 L+1)$ matrix with coefficients in $\{-1,0,+1\}$.
Case 1: $j=1, \ldots, s-1$
For $l \in\{0, \ldots, L+1\}$ we have

- if $\rho(l)=k \Rightarrow \operatorname{sign}\left(f_{j}\left(y_{l}\right)\right)=\operatorname{sign}\left(f_{j}\left(x_{i_{k}}\right)\right)$,
- if $\rho(l)=(k, k+1) \Rightarrow \operatorname{sign}\left(f_{j}\left(y_{l}\right)\right)=\operatorname{sign}\left(f_{j}(] x_{i_{k}}, x_{i_{k+1}}[)\right)$.

So, $\operatorname{sign}\left(f_{j}\left(y_{l}\right)\right)$ is known from $w$ and $\rho$, for all $j=1, \ldots, s-1$ and $l \in$ $\{0, \ldots, L+1\}$.
We also have

- if $\rho(l)=k$ or $(k, k+1) \Rightarrow \operatorname{sign}\left(f_{j}(] y_{l}, y_{l+1}[)\right)=\operatorname{sign}\left(f_{j}(] x_{i_{k}}, x_{i_{k+1}}[)\right)$.

So, $\operatorname{sign}\left(f_{j}(] y_{l}, y_{l+1}[)\right)$ is known from $w$ and $\rho$, for all $j=1, \ldots, s-1$ and $l \in\{0, \ldots, L+1\}$.
Thus one can reconstruct the first $s-1$ rows of $\operatorname{SIGN} N_{R}\left(f_{1}, \ldots, f_{s}\right)$ from $w$.
Case 2: $j=s$
For $l \in\{0, \ldots, L+1\}$ we have

- if $\rho(l)=k \Rightarrow \operatorname{sign}\left(f_{s}\left(y_{l}\right)\right)=\operatorname{sign}\left(g_{\theta(k)}\left(x_{i_{k}}\right)\right)$,
- if $\rho(l)=(k, k+1) \Rightarrow \operatorname{sign}\left(f_{s}\left(y_{l}\right)\right)=0$.

So, $\operatorname{sign}\left(f_{s}\left(y_{l}\right)\right)$ is known from $w$ and $\rho$, for all $l \in\{0, \ldots, L+1\}$ and therefore can also be reconstructed from $w$.
Now remains the most delicate case that concerns $\operatorname{sign}\left(f_{s}(] y_{l}, y_{l+1}[)\right)$ :
For $l \in\{0, \ldots, L+1\}$ we have

- if $l \neq 0, \rho(l)=k \Rightarrow$

$$
\operatorname{sign}\left(f_{s}(] y_{l}, y_{l+1}[)\right)= \begin{cases}\operatorname{sign}\left(g_{\theta(k)}\left(x_{i_{k}}\right)\right) & \text { if it is } \neq 0, \\ \operatorname{sign}\left(f_{s}^{\prime}(] x_{i_{k}}, x_{i_{k+1}}[)\right) & \text { otherwise. }\end{cases}
$$

[This is because $\left(\rho(l)=k\right.$ if $y_{l}=x_{i_{k}}$, so):

- if $g_{\theta(k)}\left(x_{i_{k}}\right)=f_{s}\left(x_{i_{k}}\right) \neq 0$, then by continuity sign is constant, and
- if $g_{\theta(k)}\left(x_{i_{k}}\right)=f_{s}\left(x_{i_{k}}\right)=0$, then on $] x_{i_{k}}, x_{i_{k+1}}[$ :

$$
\left\{\begin{array}{l}
f_{s}^{\prime} \geq 0 \Rightarrow f_{s}\left(x_{i_{k}}\right)<f_{s}(y) \text { for } y<x_{k+1}, \text { so } f_{s}(y)>0, \\
f_{s}^{\prime} \leq 0 \Rightarrow-f_{s}\left(x_{i_{k}}\right)<-f_{s}(y) \text { for } y<x_{k+1}, \text { so } f_{s}(y)<0
\end{array}\right.
$$

[using lemma (Poizat): In a real closed ordered field, if $P$ is a nonconstant polynomial s.t. $P^{\prime} \geq 0$ on $[a, b], a<b$, then $\left.P(a)<P(b)\right]$.]

- if $l \neq 0, \rho(l)=(k, k+1) \Rightarrow \operatorname{sign}\left(f_{s}(] y_{l}, y_{l+1}[)\right)=\operatorname{sign}\left(f_{s}^{\prime}(] x_{i_{k}}, x_{i_{k+1}}[)\right)$.
[We argue as follows (noting that $\rho(l)=(k, k+1)$ if $\left.y_{l} \in\right] x_{i_{k}}, x_{i_{k+1}}[$ ):
$\operatorname{sign}\left(f_{s}(] y_{l}, y_{l+1}[)\right)$ is constant so at any rate is equal to $\operatorname{sign}\left(f_{s}(] y_{l}, x_{i_{k+1}}[)\right)$, now using the fact that $f_{s}\left(y_{l}\right)=0$ and the same lemma (stated above) we get, for any $a \in] y_{l}, x_{i_{k+1}}[:$

$$
\left\{\begin{array}{l}
f_{s}^{\prime} \geq 0 \Rightarrow f_{s}\left(y_{l}\right)<f_{s}(a), \text { so } f_{s}(a)>0, \\
f_{s}^{\prime} \leq 0 \Rightarrow-f_{s}\left(y_{l}\right)<-f_{s}(a), \text { so } f_{s}(a)<0
\end{array}\right.
$$

i.e. $f_{s}$ has same sign as $f_{s}^{\prime}$.]

- if $l=0 \Rightarrow \operatorname{sign}\left(f_{s}(]-\infty, y_{1}[)\right)=\operatorname{sign}\left(f_{s}^{\prime}(]-\infty, x_{1}[)\right)$ (as before).

