REAL ALGEBRAIC GEOMETRY LECTURE NOTES (14: 03/12/2009)

SALMA KUHLMANN

THE TARSKI-SEIDENBERG PRINCIPLE

We first recall the main lemma that we proved in the last lecture and which will be used today to prove the main proposition:

Main Lemma. For any real closed field R and every sequence of polynomials $f_1, \ldots, f_s \in R[X]$ of degrees $\leq m$, with f_s nonconstant and none of the f_1, \ldots, f_{s-1} identically zero, there exists a mapping

$$\varphi: W_{2s,m} \longrightarrow W_{s,m}$$

such that:

$$SIGN_R(f_1,...,f_s) = \varphi(SIGN_R(f_1,...,f_{s-1},f_s',g_1,...,g_s)),$$

where f'_s is the derivative of f_s , and g_1, \ldots, g_s are the remainders of the euclidean division of f_s by $f_1, \ldots, f_{s-1}, f'_s$, respectively.

Main Proposition. Let $f_i(\underline{T},X) := h_{i,m_i}(\underline{T})X^{m_i} + \ldots + h_{i,0}(\underline{T})$ for $i = 1,\ldots,s$ be a sequence of polynomials in n+1 variables with coefficients in \mathbb{Z} , and let $m := max\{m_i|i=1,\ldots,s\}$. Let W' be a subset of $W_{s,m}$. Then there exists a boolean combination $B(\underline{T}) = S_1(\underline{T}) \vee \ldots \vee S_p(\underline{T})$ of polynomial equations and inequalities in the variables \underline{T} with coefficients in \mathbb{Z} , such that, for every real closed field R and every $t \in R^n$, we have

$$SIGN_R(f_1(\underline{t},X),\ldots,f_s(\underline{t},X)) \in W' \Leftrightarrow B(\underline{t}) \text{ holds true in } R.$$

Proof. Without loss of generality, we assume that none of f_1, \ldots, f_s is identically zero and that $h_{i,m_i}(\underline{T})$ is not identically zero for $i=1,\ldots,s$. To every sequence of polynomials (f_1,\ldots,f_s) accordate the s-tuple (m_1,\ldots,m_s) , where $deg(f_i)=m_i$. We compare these finite sequences by defining a strict order as follows:

$$\sigma := (m_1^{'}, \ldots, m_t^{'}) \prec \tau := (m_1, \ldots, m_t)$$

if there exists $p \in \mathbb{N}$ such that, for every q > p,

-the number of times q appears in σ = the number of times q appears in τ , and -the number of times p appears in σ < the number of times q appears in τ .

This order \prec is a total order on the set of finite sequences.

Example: let
$$m = \max(\{m_1, \ldots, m_s\}) = m_s$$
 (say),
 σ and τ be the sequence of degrees of the sequences $(f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s)$
and $(f_1, \ldots, f_{s-1}, f_s)$ respectively, i.e.
 $\sigma \leadsto (f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s)$,
 $\tau \leadsto (f_1, \ldots, f_{s-1}, f_s)$
then $\sigma \prec \tau$.

Let $m = \max\{m_1, \ldots, m_s\}.$

In particular using p = m we have:

$$\left(deg(f_1),\ldots,deg(f_{s-1}),deg(f_s'),deg(g_1),\ldots,deg(g_s)\right) \prec \left(deg(f_1),\ldots,deg(f_s)\right).$$

If $\underline{m} = \underline{0}$, then there is nothing to show, since $SIGN_R(f_1(\underline{t}, X), \dots, f_s(\underline{t}, X)) = SIGN_R(h_{1,0}(\underline{t}), \dots, h_{s,0}(\underline{t}))$ [the list of signs of "constant terms"].

Suppose that $\underline{m \geq 1}$ and $m_s = m = \max\{m_1, \ldots, m_s\}$. Let $W'' \subset W_{2s,m}$ be the inverse image of $W' \subset W_{s,m}$ under the mapping φ (as in main lemma). Set $W'' = \{sign_R(f_1, \ldots, f_{s-1}, f_s', g_1, \ldots, g_s) \mid sign_R(f_1, \ldots, f_s) \in W'\}$.

-Case 1. $h_{i,m_i}(\underline{t}) \neq 0$ for all $i = 1, \dots, s$

By the main lemma, for every real closed field R and for every $\underline{t} \in R^n$ such that $h_{i,m_i}(\underline{t}) \neq 0$ for $i = 1, \dots, s$, we have

$$SIGN_R(f_1(\underline{t},X),\ldots,f_s(\underline{t},X)) \in W'$$

 \Leftrightarrow

$$SIGN_R(f_1(\underline{t},X),\ldots,f_{s-1}(\underline{t},X),f'_s(\underline{t},X),g_1(\underline{t},X),\ldots,g_s(\underline{t},X)) \in W'',$$

where f'_s is the derivative of f_s with respect to X, and g_1, \ldots, g_s are the remainders of the euclidean division (with respect to X) of f_s by $f_1, \ldots, f_{s-1}, f'_s$, respectively (multiplied by appropriate even powers of $h_{1,m_1}, \ldots, h_{s,m_s}$, respectively, to clear the denominators).

Now, the sequence of degrees in X of $f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s$ is smaller than [the sequence of degrees in X of f_1, \ldots, f_s i.e.] (m_1, \ldots, m_s) w.r.t. the order \prec .

-Case 2. At least one of $h_{i,m_i}(\underline{t})$ is zero

In this case we can truncate the corresponding polynomial f_i and obtain a sequence of polynomials, whose sequence of degrees in X is smaller than (m_1, \ldots, m_s) w.r.t. the order \prec .

This completes the proof of main propostion and also proves the Tarski-Seidenberg principle. $\hfill\Box$