REAL ALGEBRAIC GEOMETRY LECTURE NOTES (14: 03/12/2009)

SALMA KUHLMANN

THE TARSKI-SEIDENBERG PRINCIPLE

We first recall the main lemma that we proved in the last lecture and which will be used today to prove the main proposition:

Main Lemma. For any real closed field R and every sequence of polynomials $f_{1}, \ldots, f_{s} \in R[X]$ of degrees $\leq m$, with f_{s} nonconstant and none of the f_{1}, \ldots, f_{s-1} identically zero, there exists a mapping

$$
\varphi: W_{2 s, m} \longrightarrow W_{s, m}
$$

such that:

$$
S I G N_{R}\left(f_{1}, \ldots, f_{s}\right)=\varphi\left(S I G N_{R}\left(f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}\right)\right)
$$

where f_{s}^{\prime} is the derivative of f_{s}, and g_{1}, \ldots, g_{s} are the remainders of the euclidean division of f_{s} by $f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}$, respectively.

Main Proposition. Let $f_{i}(\underline{T}, X):=h_{i, m_{i}}(\underline{T}) X^{m_{i}}+\ldots+h_{i, 0}(\underline{T})$ for $i=1, \ldots, s$ be a sequence of polynomials in $\mathrm{n}+1$ variables with coefficients in \mathbb{Z}, and let $m:=\max \left\{m_{i} \mid i=1, \ldots, s\right\}$. Let W^{\prime} be a subset of $W_{s, m}$. Then there exists a boolean combination $B(\underline{T})=S_{1}(\underline{T}) \vee \ldots \vee S_{p}(\underline{T})$ of polynomial equations and inequalities in the variables \underline{T} with coefficients in \mathbb{Z}, such that, for every real closed field R and every $\underline{t} \in R^{n}$, we have

$$
\operatorname{SIGN}_{R}\left(f_{1}(\underline{t}, X), \ldots, f_{s}(\underline{t}, X)\right) \in W^{\prime} \Leftrightarrow B(\underline{t}) \text { holds true in R. }
$$

Proof. Without loss of generality, we assume that none of f_{1}, \ldots, f_{s} is identically zero and that $h_{i, m_{i}}(\underline{T})$ is not identically zero for $i=1, \ldots, s$. To every sequence of polynomials $\left(f_{1}, \ldots, f_{s}\right)$ accociate the s-tuple $\left(m_{1}, \ldots, m_{s}\right)$, where $\operatorname{deg}\left(f_{i}\right)=m_{i}$. We compare these finite sequences by defining a strict order as follows:

$$
\sigma:=\left(m_{1}^{\prime}, \ldots, m_{t}^{\prime}\right) \prec \tau:=\left(m_{1}, \ldots, m_{t}\right)
$$

if there exists $p \in \mathbb{N}$ such that, for every $q>p$,
-the number of times q appears in $\sigma=$ the number of times q appears in τ, and -the number of times p appears in $\sigma<$ the number of times q appears in τ.

This order \prec is a total order on the set of finite sequences.
$\left[\right.$ Example: let $m=\max \left(\left\{m_{1}, \ldots, m_{s}\right\}\right)=m_{s}$ (say),
σ and τ be the sequence of degrees of the sequences $\left(f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}\right)$ and $\left(f_{1}, \ldots, f_{s-1}, f_{s}\right)$ respectively, i.e.
$\sigma \rightsquigarrow\left(f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}\right)$,
$\tau \rightsquigarrow\left(f_{1}, \ldots, f_{s-1}, f_{s}\right)$
then $\sigma \prec \tau$.]
Let $m=\max \left\{m_{1}, \ldots, m_{s}\right\}$.
In particular using $p=m$ we have:

$$
\left(\operatorname{deg}\left(f_{1}\right), \ldots, \operatorname{deg}\left(f_{s-1}\right), \operatorname{deg}\left(f_{s}^{\prime}\right), \operatorname{deg}\left(g_{1}\right), \ldots, \operatorname{deg}\left(g_{s}\right)\right) \prec\left(\operatorname{deg}\left(f_{1}\right), \ldots, \operatorname{deg}\left(f_{s}\right)\right)
$$

If $\underline{m=0}$, then there is nothing to show, since $S I G N_{R}\left(f_{1}(\underline{t}, X), \ldots, f_{s}(\underline{t}, X)\right)=$ $S I G N_{R}\left(h_{1,0}(\underline{t}), \ldots, h_{s, 0}(\underline{t})\right)$ [the list of signs of "constant terms"].

Suppose that $\underline{m \geq 1}$ and $m_{s}=m=\max \left\{m_{1}, \ldots, m_{s}\right\}$. Let $W^{\prime \prime} \subset W_{2 s, m}$ be the inverse image of $W^{\prime} \subset W_{s, m}$ under the mapping φ (as in main lemma). Set $W^{\prime \prime}=\left\{\operatorname{sign}_{R}\left(f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}\right) \mid \operatorname{sign}_{R}\left(f_{1}, \ldots, f_{s}\right) \in W^{\prime}\right\}$.
-Case 1. $h_{i, m_{i}}(\underline{t}) \neq 0$ for all $i=1, \ldots, s$
By the main lemma, for every real closed field R and for every $\underline{t} \in R^{n}$ such that $h_{i, m_{i}}(\underline{t}) \neq 0$ for $i=1, \ldots, s$, we have

$$
S I G N_{R}\left(f_{1}(\underline{t}, X), \ldots, f_{s}(\underline{t}, X)\right) \in W^{\prime}
$$

$$
\Leftrightarrow
$$

$$
S I G N_{R}\left(f_{1}(\underline{t}, X), \ldots, f_{s-1}(\underline{t}, X), f_{s}^{\prime}(\underline{t}, X), g_{1}(\underline{t}, X), \ldots, g_{s}(\underline{t}, X)\right) \in W^{\prime \prime}
$$

where f_{s}^{\prime} is the derivative of f_{s} with respect to X, and g_{1}, \ldots, g_{s} are the remainders of the euclidean division (with respect to X) of f_{s} by $f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}$, respectively (multiplied by appropriate even powers of $h_{1, m_{1}}, \ldots, h_{s, m_{s}}$, respectively, to clear the denominators).
Now, the sequence of degrees in X of $f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}$ is smaller than [the sequence of degrees in X of f_{1}, \ldots, f_{s} i.e.] $\left(m_{1}, \ldots, m_{s}\right)$ w.r.t. the order \prec.
-Case 2. At least one of $h_{i, m_{i}}(\underline{t})$ is zero
In this case we can truncate the corresponding polynomial f_{i} and obtain a sequence of polynomials, whose sequence of degrees in X is smaller than $\left(m_{1}, \ldots, m_{s}\right)$ w.r.t. the order \prec.

This completes the proof of main propostion and also proves the TarskiSeidenberg principle.

