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Let R be a real closed field.

1. MOTIVATION

Theorem 1.1. (Curve-selection Lemma: Kurvenauswahllemma) Let A

be a semialgebraic subset of R", © € R", x € A = clos(A). Then there

exists a continuous semialgebraic map f: [0,1] — R™ such that f(0) = z
and f(]0,1]) C A.

This has important consequences such as

(1) The image of a closed and bounded semialgebraic set under a con-
tinuous semialgebraic map is a closed and bounded semialgebraic set.

(2) A semialgebraic set is semialgebraic connected if and only if it is
semialgebraic path connected (wegzusammenhdingend).

2. CLOSED AND BOUNDED SEMIALGEBRAIC SETS

Definition 2.1. A subset A C R" is bounded if 37 € R such that ||a|| < r
Vae A

We have seen that for R # R we have to replace the notion of "connected"
by "semialgebraic connected".

Similarly the notion of compactness is problematic for R # R. In fact,
closed and bounded subsets of R need not be compact.

Example 2.2. Let R = Ry, = {real algebraic numbers} = the real closure of Q in R.
The interval [0,1] C R is not compact. For example the set

U={[0,r]CR :r<7m/4}U{]s,1]CR :s>n/4}

is an open cover of [0, 1] by semialgebraic subsets of R and it is not possible
to extract from it a finite subcover!
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This example shows that, unlike the notion of semialgebraic connectness,
a notion of of semialgebraic compactness given just with semialgebraic open
coverings is not appropriate. Instead, we shall suffice ourselves with studying
"closed and bounded" semialgebraic sets and bounded semialgebraic func-
tions.

Definition 2.3. A function f: A — R is bounded if Va € A 3r € R with
1f(a)l] <7

Proposition 2.4. Letr € R, r > 0 and ¢: ]0,7] — R a continuous bounded
semialgebraic function. Then ¢ extends to a continuous function on [0,7].

For the proof we need the following lemma:

Lemma 2.5. Let A C R be a semialgebraic set and ¢: A — R a semial-
gebraic function. Then there exists a non-zero polynomial f € R[x,y] such
that f vanishes on I'(p), i.e.

VeeA f(z,o(x))=0.
(For its proof see Lemma 1.1 of Lecture 21)

Proof of Proposition 2.4. Assuming Lemma 2.5, let f € R[x, y] be a non-zero
polynomial such that f vanishes on I'(p). We shall proceed by induction on
d=degf iny.
Suppost first d = 1. We write
f=Q1(x)y+Qo(x), Qo,Q1€R[x], Q1 #0.
We have that

f(@,0(2) =0 = Qu(z)p(r) + Qo(z) =0 Vo e]0,r].

We may assume that Q1(x), Qo(x) € R[x] are relatively prime (otherwise
we divide by the common factor). So we get that

_ —Qo(2)
Q1(x)

(we may assume that Qi(x) # 0 for all x €]0,7], otherwise we take an
opportune subinterval ]0,7'] C]0,7]).

Note that Q1(z) does not have a zero at x = 0 (i.e. x does not divide
Q@1(x)), otherwise by continuity

p()

li ==+
Ay ) = e

which contradicts our assumptions that 3M € R such that |¢(x)| < M for
all z €]0,7]. So we can set

_ —Q0(0)
Q1(0)

and with this new definition the map

©(0) :

®: [0,7’] — R

1S continuous.
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Let now d > 1 and assume the result to be true for degy f(x,y) < d.

Without loss of generality we may assume that f(x,y) is not divisible by x.
Otherwise, if

f(X’Y) = Xfl(XaY)a

we have

f($790($)) = xfl(xv(p(dj)) =0 Vz € ]0,7‘],
therefore

Nz, e(x) =0 Voe]or]
and we can replace f by fi if necessary.

Let
_9f

J'= Gy 20

and let
(Ai s{&jtj=1,.1,)ier

be a slicing of {f, f'}. So A; is a partition of R in intervals and points.
We may assume without loss of generality that A; = ]0,r] and ¢ = & j, (for
some 7’ small enough, i.e. replacing r by 7’ if necessary).

We have to consider two cases:

e If for z € Ay ¢(x) is also a root of f/'(z,y) (i.e. f’ vanishes on I'(p)),
then we are done by induction hypothesis, since

degy f(x,y) <d.
e If not, say sign(f’(z, &1, (z))) = sign(f'(z, p(x))) > 0 for = € ]0,r].
Claim: There are two continuous semialgebraic functions p and 6
such that p,0: [0,7] — R and
Vo e]0,r] p(z) < o(x) < 6(x
and sign(f/(z,y)) is positive for all y € ] p(x),0(z) [ (%).
Proof of Claim. We can take

p = §1j0_1 and 9 = §1j0+1.

If ¢ = &5, = &1 then we can take p to be the constant function
—(M + 1), where M is the bound for ¢.
If jo = 11 we can take 0 to be the constant function M + 1.

Note that these functions are roots of the derivative f/, and deg f’ <
d in y, so by induction hypothesis the continuous semialgebraic maps
p and 0 can be extended to [0, 7] since f" vanishes on I'(p) and I'(9)).

O
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Now consider p(0) and 6(0): by continuity we have p(0) < 6(0).

- If p(0) = 6(0), set ©(0) = p(0). This gives a continuous extension of
¢ to [0,r].

- Otherwise p(0) < 6(0). Consider the function f’(0,y): it is non-
negative for every y € [p(0),(0)] (by continuity together with (*) of
Claim).

Now if f(0,y) is constant, it would be identically zero because we
have

f(0,p(0)) < 0 < f(0,6(0))

but this is impossible since x is not a factor of f.
So we must have f’(0,y) > 0 and the function f(0,y) is strictly
increasing and has a unique root yo € [p(0),60(0)]. Set

©(0) == yo.

It remains to show that with this definition ¢ is continuous at 0
(i.e. that lim, o+ ¢(x) = yo).

Case 1. p(0) < yo < 6(0).

Then for € € R, € > 0 small enough, f(0,yo—¢) <0, f(0,yo+¢) >
0, p(0) < yo—e < yo < yo+¢ < 0(0). Hence there existsn € R, n > 0
such that for every x €10, 7|:

f(z,y0 —€) <0
f(z,yo+¢€) >0
p(x) <yo—e
Yo + ¢ < 6(z)

Therefore p(x) € |yo — €,y0 + €[ for every x €]0,7].
Case 2. p(0) = yo.

We have f(0,y0 +¢) > 0 for every ¢ € R, £ > 0 small enough.
Then there exists n € R, n > 0 such that for every x €10, n[:

{f(vaIO‘i‘f) >0

Yo—e<p(r) <yo—e

Again these imply that ¢(z) € Jyo — &, y0 + €[ for every z €]0,7[.

Case 3. 6(0) = yo. Analogous.



