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Let R be a real closed field.

1. Motivation

Theorem 1.1. (Curve-selection Lemma: Kurvenauswahllemma) Let A
be a semialgebraic subset of Rn, x ∈ Rn, x ∈ Ā = clos(A). Then there
exists a continuous semialgebraic map f : [ 0, 1 ] → Rn such that f(0) = x
and f(] 0, 1 ]) ⊂ A.

This has important consequences such as

(1) The image of a closed and bounded semialgebraic set under a con-
tinuous semialgebraic map is a closed and bounded semialgebraic set.

(2) A semialgebraic set is semialgebraic connected if and only if it is
semialgebraic path connected (wegzusammenhängend).

2. Closed and bounded semialgebraic sets

Definition 2.1. A subset A ⊆ Rn is bounded if ∃ r ∈ R such that ||a|| < r
∀ a ∈ A.

We have seen that for R 6= R we have to replace the notion of "connected"
by "semialgebraic connected".

Similarly the notion of compactness is problematic for R 6= R. In fact,
closed and bounded subsets of R need not be compact.

Example 2.2. LetR = Ralg = {real algebraic numbers} = the real closure of Q in R.
The interval [0, 1] ⊆ R is not compact. For example the set

U = { [0, r[ ⊂ R : r < π/4 } ∪ { ]s, 1] ⊂ R : s > π/4 }

is an open cover of [0, 1] by semialgebraic subsets of R and it is not possible
to extract from it a finite subcover!
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This example shows that, unlike the notion of semialgebraic connectness,
a notion of of semialgebraic compactness given just with semialgebraic open
coverings is not appropriate. Instead, we shall suffice ourselves with studying
"closed and bounded" semialgebraic sets and bounded semialgebraic func-
tions.

Definition 2.3. A function f : A→ R is bounded if ∀ a ∈ A ∃ r ∈ R with
||f(a)|| < r.

Proposition 2.4. Let r ∈ R, r > 0 and ϕ : ]0, r]→ R a continuous bounded
semialgebraic function. Then ϕ extends to a continuous function on [0, r].

For the proof we need the following lemma:

Lemma 2.5. Let A ⊆ R be a semialgebraic set and ϕ : A → R a semial-
gebraic function. Then there exists a non-zero polynomial f ∈ R[x, y] such
that f vanishes on Γ(ϕ), i.e.

∀x ∈ A f(x, ϕ(x)) = 0.

(For its proof see Lemma 1.1 of Lecture 21)

Proof of Proposition 2.4. Assuming Lemma 2.5, let f ∈ R[x, y] be a non-zero
polynomial such that f vanishes on Γ(ϕ). We shall proceed by induction on
d = deg f in y.

Suppost first d = 1. We write

f = Q1(x)y +Q0(x), Q0, Q1 ∈ R[x], Q1 6≡ 0.

We have that

f(x, ϕ(x)) = 0 ⇒ Q1(x)ϕ(x) +Q0(x) = 0 ∀x ∈ ]0, r].

We may assume that Q1(x), Q0(x) ∈ R[x] are relatively prime (otherwise
we divide by the common factor). So we get that

ϕ(x) =
−Q0(x)
Q1(x)

(we may assume that Q1(x) 6= 0 for all x ∈ ]0, r], otherwise we take an
opportune subinterval ]0, r′] ⊂ ]0, r]).

Note that Q1(x) does not have a zero at x = 0 (i.e. x does not divide
Q1(x)), otherwise by continuity

lim
x→0+

ϕ(x) = ±∞

which contradicts our assumptions that ∃M ∈ R such that |ϕ(x)| < M for
all x ∈ ]0, r]. So we can set

ϕ(0) :=
−Q0(0)
Q1(0)

and with this new definition the map

ϕ : [0, r] −→ R

is continuous.
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Let now d > 1 and assume the result to be true for degy f(x, y) < d.
Without loss of generality we may assume that f(x, y) is not divisible by x.
Otherwise, if

f(x, y) = xf1(x, y),

we have

f(x, ϕ(x)) = xf1(x, ϕ(x)) = 0 ∀x ∈ ]0, r],
therefore

f1(x, ϕ(x)) = 0 ∀x ∈ ]0, r]

and we can replace f by f1 if necessary.
Let

f ′ =
∂f

∂y
6≡ 0

and let
(Ai ; {ξij}j=1,...,li)i∈I

be a slicing of {f, f ′}. So Ai is a partition of R in intervals and points.
We may assume without loss of generality that A1 = ]0, r] and ϕ = ξ1,j0 (for
some r′ small enough, i.e. replacing r by r′ if necessary).

We have to consider two cases:

• If for x ∈ A1 ϕ(x) is also a root of f ′(x, y) (i.e. f ′ vanishes on Γ(ϕ)),
then we are done by induction hypothesis, since

degy f
′(x, y) < d.

• If not, say sign(f ′(x, ξ1j0(x))) = sign(f ′(x, ϕ(x))) > 0 for x ∈ ]0, r].

Claim: There are two continuous semialgebraic functions ρ and θ
such that ρ, θ : [0, r]→ R and

∀x ∈ ]0, r] ρ(x) < ϕ(x) < θ(x)

and sign(f ′(x, y)) is positive for all y ∈ ] ρ(x), θ(x) [ (∗).

Proof of Claim. We can take

ρ := ξ1j0−1 and θ = ξ1j0+1.

If ϕ = ξ1j0 = ξ11 then we can take ρ to be the constant function
−(M + 1), where M is the bound for ϕ.

If j0 = l1 we can take θ to be the constant function M + 1.

Note that these functions are roots of the derivative f ′, and deg f ′ <
d in y, so by induction hypothesis the continuous semialgebraic maps
ρ and θ can be extended to [0, r] since f ′ vanishes on Γ(ρ) and Γ(θ)).

�
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Now consider ρ(0) and θ(0): by continuity we have ρ(0) 6 θ(0).

- If ρ(0) = θ(0), set ϕ(0) = ρ(0). This gives a continuous extension of
ϕ to [0, r].

- Otherwise ρ(0) < θ(0). Consider the function f ′(0, y): it is non-
negative for every y ∈ [ρ(0), θ(0)] (by continuity together with (∗) of
Claim).

Now if f(0, y) is constant, it would be identically zero because we
have

f(0, ρ(0)) 6 0 6 f(0, θ(0))

but this is impossible since x is not a factor of f .
So we must have f ′(0, y) > 0 and the function f(0, y) is strictly

increasing and has a unique root y0 ∈ [ρ(0), θ(0)]. Set

ϕ(0) := y0.

It remains to show that with this definition ϕ is continuous at 0
(i.e. that limx→0+ ϕ(x) = y0).

Case 1. ρ(0) < y0 < θ(0).
Then for ε ∈ R, ε > 0 small enough, f(0, y0−ε) < 0, f(0, y0+ε) >

0, ρ(0) < y0−ε < y0 < y0+ε < θ(0). Hence there exists η ∈ R, η > 0
such that for every x ∈ ]0, η[:

f(x, y0 − ε) < 0
f(x, y0 + ε) > 0
ρ(x) < y0 − ε
y0 + ε < θ(x)

Therefore ϕ(x) ∈ ]y0 − ε, y0 + ε[ for every x ∈ ]0, η[.

Case 2. ρ(0) = y0.
We have f(0, y0 + ε) > 0 for every ε ∈ R, ε > 0 small enough.

Then there exists η ∈ R, η > 0 such that for every x ∈ ]0, η[:{
f(x, y0 + ε) > 0
y0 − ε < ρ(x) < y0 − ε

Again these imply that ϕ(x) ∈ ]y0 − ε, y0 + ε[ for every x ∈ ]0, η[.

Case 3. θ(0) = y0. Analogous.
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