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Let R be a real closed field.

1. THOM’S LEMMA

Lemma 1.1. Let A C R be a semialgebraic set and p: A — R a semialge-
braic function. Then exists f € R[x,y|, f # 0, such that

VzeA flz,p(z)) =0 (f vanishes on the graph of ¢).

Proof. The graph of ¢ T'(p) = {(z,¢(x)) : * € A} C R? is a semialgebraic
set, so it is a finite union of sets of the form

{(z,y) € R*: fi(x,y) =0, i =1,...,0 gj(z,y) >0, j=1,...,m}

with at least one among the f; # 0, otherwise I'(¢) would contain an open
subset of R?, contradiction.
Now take f to be the product of these nonzero polynomials. (]

Proposition 1.2. (Thom’s Lemma) Let { f1,..., fs} be a family of non-zero
polynomials in R[X] closed under derivation. Let e: {1,...,s} — {—1,0,1}
be a sign function. Set

A; = {x € R:sign(fr(x)) =e(k), k=1,...,s}.

Denote by Az the semialgebraic subset of R obtained by relazing the strict
inequalities in Ag, i.e. :

Az = ﬂ{x € R :sign(fr(x)) € £(k)}.

k=1
where € is defined as follows:

0={0} —1={-1,0} 1=1{0,1}.
Then
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(1) either Ag is empty, or Ae is a point, or Ac is a non-empty open in-
terval (if Ac is empty or a point, then (k) = 0 for some k; if A is
a non-empty open interval then (k) = £1 for every k);

(13) if Az is non-empty then its closure is Az (which is either a point or a
closed interval different from a point and the interior of this interval
is Ac);

(7i1) if Ac is empty then Az is either empty or a point.

Proof. By induction on s. The Lemma holds trivially for s = 0. Let
fis- s fss fey1 € R[x] \ {0} be polynomials such that if f; # 0, then
fi. € {fi,-.., fo41}. Without loss of generality we assume that deg(fe41) =
max{deg(fx): 1 <k <s+1}.

Let ¢': {1,...,8,s +1} — {-1,0,1} and e: {1,...,s,} — {—1,0,1} the
restriction.

Note that

Ao =A.N{x € R:sign(fsi1(z)) =<' (s +1)}.

By induction A, is empty, a point, or an interval.

If A, is empty or a point, then obviously so is A.s and the other property
follows immediately by induction hypothesis on A..

Assume A, is an interval. Now f, , =0or fi,, € {f1,..., fs}. So by def-
inition of A., fi,; has constant sign on A.. Therefore f,y1 is either strictly
increasing, or strictly decreasing or constant on A..

Consider A; = (a,b) There are three cases depending on &'(s + 1):

Case 1. Ao ={x € (a,b) : fs41(x) > 0}.
Case 2. Ao ={x € (a,b) : fs41(x) < 0}.
Case 3. Ao = {x € (a,b) : fs41(x) = 0}.

If Ao = () there is nothing to prove.

Assume A, # (). If fsy1 is constant on A, then fs11 is a constant polyno-
mial fsy1(x) = ¢ # 0. So Ay is empty or A = (a,b) depending on whether
sign(c) = €'(s+1).

Assume now fsiq strictly increasing on A, and Ao = {z € (a,b) :
fst1(x) > 0} # 0. Let 9 = inf{z € (a,b) : fer1(x) > 0}. Since foy1
is strictly increasing it follows that feyi(x) > 0 Vz € (a,b) with x > xo.
So A. = (z0,b) and its closure is [zg,b] = Az. The other cases are treated
similarly. (]

2. SEMIALGEBRAIC PATH CONNECTEDNESS

Definition 2.1. Let A C R™ be a semialgebraic set.
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(1) A semialgebraic path in A is a continuous semialgebraic map

a: I — A,
where [ is either [0, 1] or |0, 1].

(2) Let z,y € A. We say that x is semialgebraic path connected to y if
there exists a semialgebraic path in A

a:[0,1] — A

with a(0) = z and a(1) = y.

Remark 2.2. Note that "z is semialgebraic path connected to y" is
an equivalence relation on A:
To see simmetry observe that if « is a path from x to y then

a*(t) = a(l—1t)

defines a path from y to x.
To see transitivity observe that if « is a path from x to y and [ is
a path from y to z, then

(1) = o(2t) 0<t<1/2
T\t 1/2<t<1
is a path from z to z.

(3) A is semialgebraic path connected if any two points in A are
semialgebraic path connected.

Proposition 2.3. Let A be a semialgebraic set. Then
A is semialgebraic connected <= A is semialgebraic path connected.

Proof.
(=) Suppose A is a semialgebraic connected set and let

Ve
=1

a semialgebraic cell decomposition of A (so each C; is semialgebraic
path connected). Then we have seen that there is an equivalence
relation on {C; : i =1,...,n} given by:

Ci ~ Cj = CZ'O,. . .,Ciq such that Cio = CZ', Ciq = Cj and
CikﬂéikJrl#@OFCikﬂCikJrl#@ VO0<k<qg,
such that the equivalence classes with respect to this equivalence re-

lation are the semialgebraic connected component of S. Since A is
semialgebraic connected there is only one equivalence class.

Claim 1. If C is a semialgebraic path connected set, also the
closure C' of C' is semialgebraic path connected (it is an immediate
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consequence of the Curve Selection Lemma).

Claim 2. If A, Ay C R" are semialgebraic path connected with
A1 N As # (), then A; U As is semialgebraic path connected.

So let x,y € A. We want to find a semialgebraic path in A joining
xand y. Let x € C; and y € Cj and Cy, ..., C;, as above. For every
0<k<aq,letae€ Clk ﬂC’ikH or ai € CZk mCik+1' By Claim 1
and Claim 2 we can find semialgebraic paths joining ay with axiq
for every 0 < k < ¢ and conclude joining x with ag (since C; = Cj,
is semialgebraic path connected) and a,—1 with y (since Cj = Cj, is
semialgebraic path connected).

(<) Claim. If A is path connected then A is connected.

Suppose for a contradiction that A is a disjoint union of non-empty
open sets A; and Ap. Take z € Ay, y € Ag and ¢ : [0,1] — A a
continuous function such that ¢(z) = 0 and ¢(y) = y (it exists
because A is path connected).

Now consider X7 := [0,1] N o~ !(A1) and X3 := [0,1] N~ (As).
Then X; and X5 disconnect [0, 1], contradiction.

So we have:

A semialg. path conn. = A path conn. = A conn. = A semialg. conn.
O

The semialgebraic assumption is essential to prove (=), as the following
example shows:

Example 2.4. Let T' = {(z, sin(1/z) : £ > 0} C R? and consider A =
{(0,0)} UT. Note that (0,0) is in the closure I of I'. Then A is connected
but it is not path connected: there is no continuous function inside A joining
{(0,0)} with a point of T.

3. SEMIALGEBRAIC COMPACTNESS
Definition 3.1. A semialgebraic set A C R" is semialgebraic compact if

for every semialgebraic path «a: |0, 1[— A,

3 lim o(t) € A.
t—0t
Theorem 3.2. Let A C R" be a semialgebraic set. Then
A is semialgebraic compact <= A is closed and bounded.

Proof.

(<) Let A C R" be closed and bounded and «a: ]0, 1[— A a semialgebraic
path.
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Since A is bounded, « can be continuously extended to 0, so

3 lim a(t) =z € R"
t—0+
and = = «(0).
But A is closed, then a(0) € A.

(=) Assume A is semialgebraic compact and suppose for a contradiction
that A is not closed.

Let z € A, x ¢ A. By the Curve Selection Lemma there is a semi-
algebraic continuous function f: [0,1] — R"™ such that f(]0,1]) C A
and f(0) = x. Therefore

x = lim f(¢),
Tim f()
and x € A, since A is semialgebraic compact. Contradiction.

To show that A is bounded we use the following corollary to the

Curve Selection Lemma:

Corollary 3.3. Let A C R™ be an unbounded semialgebraic set.
Then there is a semialgebraic path a: ]0,1[— A with

1““ o\l = .
‘:‘

The following Theorem and its Corollory is a particular indication that
the notion of "semialgebraic compactness" is the correct analogue to usual
compactness, adapted to the semialgebraic setting:

Theorem 3.4. Let A, B semialgebraic sets and f: A — B a semialgebraic
continuous map. Then

A semialgebraic compact = f(A) semialgebraic compact .
Proof. We assume the following Lemma:

Lemma 3.5. Let f: A — B be a semialgebraic map with A, B semialgebraic
sets. Let 3:1]0,1[— B be a semialgebraic path in B with 5(]0,1[) C f(A).
Then there is 0 < ¢ < 1 and a semialgebraic continuous function a: |0, c[— A
such that B(t) = f(a(t)) for every 0 <t < c.

Let 8:]0,1[ — f(A) be a semialgebraic path. We want to show that
3 1 t) € f(A).
Jim () € f(A)

and a semialgebraic continuous function

By Lemma 3.5, there is 0 < ¢ < 1
= f(a(t)) for every 0 < t < ¢. Since A is

a:]0,¢[ — A such that §(¢)
semialgebraic compact
3 lim at) =z € A.
t—0+

So limy; o+ B(t) = f(x) € f(A), as required. O
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Corollary 3.6. If A is a semialgebraic compact set then any semialgebraic
continuous function f: A — R takes maximum and minimum.

Proof. By Thereom above f(A) is semialgebraic compact, so by 3.2 it is
closed and bounded. So f(A) is a union of finitely many intervals [a;, b;]
(With a; < b; € R) O



