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Let R be a real closed field.

1. Thom’s Lemma

Lemma 1.1. Let A ⊂ R be a semialgebraic set and ϕ : A → R a semialge-
braic function. Then exists f ∈ R[x, y], f 6= 0, such that

∀x ∈ A f(x, ϕ(x)) = 0 (f vanishes on the graph of ϕ).

Proof. The graph of ϕ Γ(ϕ) = {(x, ϕ(x)) : x ∈ A} ⊂ R2 is a semialgebraic
set, so it is a finite union of sets of the form

{(x, y) ∈ R2 : fi(x, y) = 0, i = 1, . . . , l gj(x, y) > 0, j = 1, . . . ,m}

with at least one among the fi 6= 0, otherwise Γ(ϕ) would contain an open
subset of R2, contradiction.

Now take f to be the product of these nonzero polynomials. �

Proposition 1.2. (Thom’s Lemma) Let {f1, . . . , fs} be a family of non-zero
polynomials in R[X] closed under derivation. Let ε : {1, . . . , s} → {−1, 0, 1}
be a sign function. Set

Aε := {x ∈ R : sign(fk(x)) = ε(k), k = 1, . . . , s}.

Denote by Aε̄ the semialgebraic subset of R obtained by relaxing the strict
inequalities in Aε, i.e. :

Aε̄ :=
s⋂

k=1

{x ∈ R : sign(fk(x)) ∈ ε̄(k)}.

where ε̄ is defined as follows:

0̄ = {0} − 1̄ = {−1, 0} 1̄ = {0, 1}.

Then
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(i) either Aε is empty, or Aε is a point, or Aε is a non-empty open in-
terval (if Aε is empty or a point, then ε(k) = 0 for some k; if Aε is
a non-empty open interval then ε(k) = ±1 for every k);

(ii) if Aε is non-empty then its closure is Aε̄ (which is either a point or a
closed interval different from a point and the interior of this interval
is Aε);

(iii) if Aε is empty then Aε̄ is either empty or a point.

Proof. By induction on s. The Lemma holds trivially for s = 0. Let
f1, . . . , fs, fs+1 ∈ R[x] \ {0} be polynomials such that if f ′k 6= 0, then
f ′k ∈ {f1, . . . , fs+1}. Without loss of generality we assume that deg(fs+1) =
max{deg(fk) : 1 6 k 6 s+ 1}.

Let ε′ : {1, . . . , s, s + 1} → {−1, 0, 1} and ε : {1, . . . , s, } → {−1, 0, 1} the
restriction.

Note that

Aε′ = Aε ∩ {x ∈ R : sign(fs+1(x)) = ε′(s+ 1)}.

By induction Aε is empty, a point, or an interval.
If Aε is empty or a point, then obviously so is Aε′ and the other property

follows immediately by induction hypothesis on Aε.
Assume Aε is an interval. Now f ′s+1 = 0 or f ′s+1 ∈ {f1, . . . , fs}. So by def-

inition of Aε, f ′s+1 has constant sign on Aε. Therefore fs+1 is either strictly
increasing, or strictly decreasing or constant on Aε.

Consider Aε = (a, b) There are three cases depending on ε′(s+ 1):

Case 1. Aε′ = {x ∈ (a, b) : fs+1(x) > 0}.
Case 2. Aε′ = {x ∈ (a, b) : fs+1(x) < 0}.
Case 3. Aε′ = {x ∈ (a, b) : fs+1(x) = 0}.

If Aε′ = ∅ there is nothing to prove.
Assume Aε′ 6= ∅. If fs+1 is constant on Aε then fs+1 is a constant polyno-

mial fs+1(x) = c 6= 0. So Aε′ is empty or Aε′ = (a, b) depending on whether
sign(c) = ε′(s+ 1).

Assume now fs+1 strictly increasing on Aε and Aε′ = {x ∈ (a, b) :
fs+1(x) > 0} 6= ∅. Let x0 = inf{x ∈ (a, b) : fs+1(x) > 0}. Since fs+1

is strictly increasing it follows that fs+1(x) > 0 ∀x ∈ (a, b) with x > x0.
So Aε′ = (x0, b) and its closure is [x0, b] = Aε̄′ . The other cases are treated
similarly. �

2. Semialgebraic path connectedness

Definition 2.1. Let A ⊆ Rn be a semialgebraic set.
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(1) A semialgebraic path in A is a continuous semialgebraic map

α : I −→ A,

where I is either [0, 1] or ]0, 1[.

(2) Let x, y ∈ A. We say that x is semialgebraic path connected to y if
there exists a semialgebraic path in A

α : [0, 1] −→ A

with α(0) = x and α(1) = y.

Remark 2.2. Note that "x is semialgebraic path connected to y" is
an equivalence relation on A:

To see simmetry observe that if α is a path from x to y then

α∗(t) := α(1− t)
defines a path from y to x.
To see transitivity observe that if α is a path from x to y and β is

a path from y to z, then

γ(t) :=

{
α(2t) 0 6 t 6 1/2
β(2t− 1) 1/2 6 t 6 1

is a path from x to z.

(3) A is semialgebraic path connected if any two points in A are
semialgebraic path connected.

Proposition 2.3. Let A be a semialgebraic set. Then

A is semialgebraic connected ⇐⇒ A is semialgebraic path connected.

Proof.
(⇒) Suppose A is a semialgebraic connected set and let

A =
n⋃

i=1

Ci

a semialgebraic cell decomposition of A (so each Ci is semialgebraic
path connected). Then we have seen that there is an equivalence
relation on {Ci : i = 1, . . . , n} given by:

Ci ∼ Cj ⇔ ∃ Ci0 , . . . , Ciq such that Ci0 = Ci, Ciq = Cj and

Cik ∩ C̄ik+1
6= ∅ or C̄ik ∩ Cik+1

6= ∅ ∀ 0 6 k < q,

such that the equivalence classes with respect to this equivalence re-
lation are the semialgebraic connected component of S. Since A is
semialgebraic connected there is only one equivalence class.

Claim 1. If C is a semialgebraic path connected set, also the
closure C̄ of C is semialgebraic path connected (it is an immediate
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consequence of the Curve Selection Lemma).

Claim 2. If A1, A2 ⊆ Rn are semialgebraic path connected with
A1 ∩A2 6= ∅, then A1 ∪A2 is semialgebraic path connected.

So let x, y ∈ A. We want to find a semialgebraic path in A joining
x and y. Let x ∈ Ci and y ∈ Cj and Ci0 , . . . , Ciq as above. For every
0 6 k < q, let ak ∈ Cik ∩ C̄ik+1

or ak ∈ C̄ik ∩ Cik+1
. By Claim 1

and Claim 2 we can find semialgebraic paths joining ak with ak+1

for every 0 6 k < q and conclude joining x with a0 (since Ci = Ci0

is semialgebraic path connected) and aq−1 with y (since Cj = Ciq is
semialgebraic path connected).

(⇐) Claim. If A is path connected then A is connected.

Suppose for a contradiction that A is a disjoint union of non-empty
open sets A1 and A2. Take x ∈ A1, y ∈ A2 and ϕ : [0, 1] → A a
continuous function such that ϕ(x) = 0 and ϕ(y) = y (it exists
because A is path connected).

Now consider X1 := [0, 1] ∩ ϕ−1(A1) and X2 := [0, 1] ∩ ϕ−1(A2).
Then X1 and X2 disconnect [0, 1], contradiction.

So we have:

A semialg. path conn.⇒ A path conn. ⇒ A conn. ⇒ A semialg. conn.

�

The semialgebraic assumption is essential to prove (⇒), as the following
example shows:

Example 2.4. Let Γ = {(x, sin(1/x) : x > 0} ⊂ R2 and consider A =
{(0, 0)} ∪ Γ. Note that (0, 0) is in the closure Γ̄ of Γ. Then A is connected
but it is not path connected: there is no continuous function inside A joining
{(0, 0)} with a point of Γ.

3. Semialgebraic compactness

Definition 3.1. A semialgebraic set A ⊂ Rn is semialgebraic compact if
for every semialgebraic path α : ]0, 1[−→ A,

∃ lim
t→0+

α(t) ∈ A.

Theorem 3.2. Let A ⊆ Rn be a semialgebraic set. Then

A is semialgebraic compact ⇐⇒ A is closed and bounded.

Proof.
(⇐) Let A ⊆ Rn be closed and bounded and α : ]0, 1[→ A a semialgebraic

path.
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Since A is bounded, α can be continuously extended to 0, so

∃ lim
t→0+

α(t) = x ∈ Rn

and x = α(0).
But A is closed, then α(0) ∈ A.

(⇒) Assume A is semialgebraic compact and suppose for a contradiction
that A is not closed.

Let x ∈ Ā, x /∈ A. By the Curve Selection Lemma there is a semi-
algebraic continuous function f : [0, 1]→ Rn such that f(]0, 1]) ⊂ A
and f(0) = x. Therefore

x = lim
t→0+

f(t),

and x ∈ A, since A is semialgebraic compact. Contradiction.
To show that A is bounded we use the following corollary to the

Curve Selection Lemma:

Corollary 3.3. Let A ⊆ Rn be an unbounded semialgebraic set.
Then there is a semialgebraic path α : ]0, 1[→ A with

lim
t→0
|α(t)| =∞.

�

The following Theorem and its Corollory is a particular indication that
the notion of "semialgebraic compactness" is the correct analogue to usual
compactness, adapted to the semialgebraic setting:

Theorem 3.4. Let A,B semialgebraic sets and f : A → B a semialgebraic
continuous map. Then

A semialgebraic compact ⇒ f(A) semialgebraic compact .

Proof. We assume the following Lemma:

Lemma 3.5. Let f : A→ B be a semialgebraic map with A, B semialgebraic
sets. Let β : ]0, 1[→ B be a semialgebraic path in B with β(]0, 1[) ⊆ f(A).
Then there is 0 < c 6 1 and a semialgebraic continuous function α : ]0, c[→ A
such that β(t) = f(α(t)) for every 0 < t < c.

Let β : ]0, 1[ → f(A) be a semialgebraic path. We want to show that

∃ lim
t→0+

β(t) ∈ f(A).

By Lemma 3.5, there is 0 < c 6 1 and a semialgebraic continuous function
α : ]0, c[ → A such that β(t) = f(α(t)) for every 0 < t < c. Since A is
semialgebraic compact

∃ lim
t→0+

α(t) = x ∈ A.

So limt→0+ β(t) = f(x) ∈ f(A), as required. �
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Corollary 3.6. If A is a semialgebraic compact set then any semialgebraic
continuous function f : A→ R takes maximum and minimum.

Proof. By Thereom above f(A) is semialgebraic compact, so by 3.2 it is
closed and bounded. So f(A) is a union of finitely many intervals [ai, bi]
(with ai 6 bi ∈ R). �


