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Let R be a real closed field.

1. Semialgebraic dimension

Theorem 1.1. Let S ⊂ Rn be a semialgebraic set and T1, . . . , Tq finitely
many semialgebraic subsets of S. Then

S =
⋃̇

k=1,...,r

Σk, where

(i) every Σk is semialgebraic homeomorphic to an open hypercube (0, 1)dk ;

(ii) the closure of Σk in S is the union of Σk and some Σj with j 6= k
and dj < dk;

(iii) the closure Σ̄k of Σk is the union of Σk and finitely many semi-
algebraic sets Si semialgebraic homeomorphic to an open hypercube
(0, 1)di , with di < dk;

(iv) every Ti is the union of some Σk.

Such a decomposition S =
⋃
k Σk is said to be a stratification of S and the

Σ1, . . . ,Σr are called strata.

Proposition 1.2. Let S ⊂ Rn be a semialgebraic set. Let

S =
p⋃
i=1

Ci S =
q⋃
j=1

Dj

be two decompositions of S into a disjoint union of semialgebraic sets, with

Ci semialgebraic isomorphic to (0, 1)di ∀ i = 1, . . . , p,

Dj semialgebraic isomorphic to (0, 1)dj ∀ j = 1, . . . , q.

Then maxi=1,...,p{di} = maxj=1,...,q{dj} = d.
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We define the dimension of S such a d. We write dimS = d.

Proof. We can apply Theorem 1.1 taking the semialgebraic subsets Tij =
Ci ∩Dj , for i = 1, . . . , p and j = 1, . . . , q, and we find a stratification

S =
r⋃

k=1

Σk

which is a common refinement of the two decomposition, i.e. each Ci and
each Dj is a finite union of some Σk and each Σk is semialgebraic homeo-
morphic to (0, 1)dk .

We want to show that maxi=1,...,p{di} = maxj=1,...,q{dj} = maxk=1,...,r{dk}.

Set d̄i := maxi=1,...,p{di} and d̄k := maxk=1,...,r{dk}.
Since every Σk is contained in some Ci, of course d̄k 6 d̄i.

Let now Σk a stratum semialgebraic homeomorphic to (0, 1)d̄k and suppose
that Σk ⊂ Ci. We claim that Σk is open in Ci (equivalently, Ci \ Σk is closed
in Ci): by Theorem 1.1(ii), if Σs is a stratum in Ci \ Σk then the closure
of Σs in Ci contains only Σs and strata Σa with da < ds 6 d̄k. Therefore
the closure of Ci \ Σk in Ci is disjoint from Σk and this shows that Ci \ Σk

is closed in Ci (and Σk is open in Ci). We conclude assuming the following
fact:

Fact 1.3.
• A ⊂ X, X homeomorphic to (0, 1)d, A open in X ⇒ A locally
homeomorphic to (0, 1)d (i.e. for every x ∈ A there is an open neigh-
borhood of x homeomorphic to (0, 1)d).

• (0, 1)d1 is homeomorphic to (0, 1)d2 ⇔ d1 = d2.

Therefore d̄k = d̄i, and d̄k = d̄j is similar. �

Remark 1.4. Let A, B ⊂ Rn be semialgebraic sets. Then

(1) dim(A ∪B) = max{dimA,dimB}.

(2) dim(A×B) = dimA+ dimB.

We see now that the dimension of a semialgebraic set behaves well with
respect to the topological closure:

Proposition 1.5. Let S ⊂ Rn be semialgebraic. Then

(i) dim S̄ = dimS.

(ii) dim(S̄ \ S) < dimS.

Proof. Let us observe that by 1.4(1), (ii) ⇒ (i).
We claim that if

S =
⋃̇

k=1,...,r

Σk
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is a stratification of S as in Theorem 1.1, then

S̄ =
r⋃

k=1

Σ̄k :

(⊆)
⋃r
k=1 Σ̄k is a finite union of closed set, so it is closed. It contains S,

so it contains also the closure S̄ of S.

(⊇) For every k = 1, . . . , r, Σk ⊆ S. Then Σ̄k ⊆ S̄ and
⋃r
k=1 Σ̄k ⊆ S̄.

Therefore dim(S̄ \ S) 6 max{dim(Σ̄k\ Σk) : 1 6 k 6 r} and by Theorem
1.1(iii) this is stricly less than max{dim Σk : 1 6 k 6 r} = dimS. �

Now we see that the dimension of a semialgebraic set is invariant by semi-
algebraic bijections (not necessarily continuous!):

Lemma 1.6. Let A ⊂ Rn+k be a semialgebraic set, π : Rn+k → Rn the
projection on the first n coordinates. Then dimπ(A) 6 dimA. Moreover if
π|A : A→ Rn is injective, then dimπ(A) = dimA.

Proof. By induction on k.
• k = 1. Write A as a disjoint union of cells.

• k ⇒ k + 1. Consider the projection π : Rn+k+1 → Rn on the first n
coordinates as the composition of the projection π1 : Rn+k+1 → Rn+1

on the first n+ 1 coordinates and the projection π2 : Rn+1 → Rn on
the first n coordinates:

Rn+1+k

π

##π1 // Rn+1
π2 // Rn

A 7→ A1 7→ π(A)

Then by induction dimA > dimπ1(A) = A1 > dimπ2(A1) = π(A).

Moreover

π|A is injective ⇐⇒ π1|A and π2|A1
are injective.

�

Theorem 1.7. Let S ⊂ Rn be semialgebraic, f : S → Rk a semialgebraic
map (not necessarily continuous). Then dim f(S) 6 dimS. If f is injective
then dim f(S) = dimS.

Proof. Let A ⊂ Rn+k be the graph of f :

A = Γ(f) = {(x, f(x)) : x ∈ S}.

Let π1 : Rn+k → Rn be the projection on the first n coordinates. Then π1|A
is injective and π1(A) = S. Therefore, by Lemma 1.6, dimS = dimA.

Let now π2 : Rn+k → Rk be the projection on the last k coordinates. Then
π2(A) = f(S). Again by Lemma 1.6 dim f(S) 6 dimA = dimS.

If f is injective then dim f(S) = dimA. �
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2. Algebraic dimension

Consider the ring of polynomials R[x] := R[x1, . . . , xn] in n variables and
coefficients in R.

An algebraic set V ⊂ Rn is by definition the common zeroset of all poly-
nomials belonging to a subset A ⊂ R[x]:

V = Z(A) := {x ∈ Rn : p(x) = 0 ∀ p ∈ A}.

Then we can consider the set of polynomials which vanish on V (which of
course contains A):

I(V ) := {p ∈ R[x] : p(x) = 0 ∀x ∈ V }.

We take the ring of polynomal functions on V , i.e. the quotient of R[x] by
I(V ):

P(V ) :=
R[x]
I(V )

.

And now we are ready to define the algebraic dimension of V :

Definition 2.1. The dimension of an algebraic set V is by definition the
Krull dimension of P(V ), i.e. the maximal d ∈ N such that

∃ P0 ( P1 ( · · · ( Pd,

where Pi is a prime ideal of P(V ) ∀ i = 1, . . . , d.
We recall that an ideal P is said to be prime if for every pair of ideals A

and B,
AB ⊂ P ⇒ A ⊂ P or B ⊂ P.

In general, given a subset S ⊂ Rn, Z(I(S)) is the smallest algebraic
subset of Rn containing S. It is said to be the Zariski closure of S and it
is denoted by S̄Z .

In fact, the algebraic subsets of Rn are the closed sets of the Zariski
topology, and S̄Z is the closure of S with respect to this topology.

The Zariski topology is coarser than the Euclidean topology, i.e. each
algebraic set is closed in the Euclidean topology, but the converse is not
true.

Theorem 2.2. Let S ⊂ Rn be a semialgebraic set. Then its dimension as a
semialgebraic set is equal to the dimension, as an algebraic set, of its Zariski
closure S̄Z . In particular, if V ⊂ Rn is an algebraic set, then its dimension
as a semialgebraic set is equal to its dimension as an algebraic set (i.e. the
Krull dimension of P(V )).

Dimension will be investigated more during next term.


