REAL ALGEBRAIC GEOMETRY LECTURE NOTES (23: 19/01/10)

SALMA KUHLMANN

Contents

1.	Valued Z -modules and valued Q -vector spaces	1
2.	Hahn valued modules	3
3.	Hahn Sandwich Proposition	4

PART III

Konvexe Bewertungen und reelle Stellen auf angeordnete Körper

1. Valued Z-modules and valued Q-vector spaces

All modules M considered are left Z-modules for a fixed ring Z with 1 (we are mainly interested in $Z = \mathbb{Z}$, i.e. in valued abelian groups).

Definition 1.1. Let Γ be a totally ordered set and ∞ an element greater than aech element of Γ (Notation: $\infty > \Gamma$). A surjective map

$$v: M \longrightarrow \Gamma \cup \{\infty\}$$

is a valuation on M (and (M, v) is a valued module) if $\forall x, y \in M$ and $\forall r \in Z$:

- (i) $v(x) = \infty \Leftrightarrow x = 0$;
- (ii) v(rx) = v(x), if $r \neq 0$ (value preserving scalar multiplication);
- (iii) $v(x-y) \ge \min\{v(x), v(y)\}$ (ultrametric Δ -inequality).

Remark 1.2. $(i) + (ii) \Rightarrow M$ is torsion-free.

Remark 1.3. Consequences of the ultrametric:

- $v(x) \neq v(y) \Rightarrow v(x+y) = \min\{v(x), v(y)\};$
- $v(x+y) > v(x) \Rightarrow v(x) = v(y)$.

Definition 1.4. $v(M) := \Gamma = \{v(x) : 0 \neq x \in M\}$ is the value set of M.

2

Definition 1.5.

(i) Let (M_1, v_1) , (M_2, v_2) two valued modules with value sets Γ_1 and Γ_2 respectively. Let

$$h: M_1 \longrightarrow M_2$$

be an isomorphism of Z-modules. We say that h preserves the valuation if there is an isomorphism of ordered sets

$$\varphi \colon \Gamma_1 \longrightarrow \Gamma_2$$

such that $\forall x \in M_1 : \varphi(v_1(x)) = v_2(h(x)).$

(ii) Two valuations v_1 , v_2 on M are **equivalent** if the identity map on M preserves the valuation.

Definition 1.6.

(1) An **ordered system of** Z**-modules** is denoted by:

$$[\,\Gamma,\,\,\{B(\gamma):\gamma\in\Gamma\}\,]$$

where $\{B(\gamma): \gamma \in \Gamma\}$ is a family of modules indexed by a totally ordered set Γ .

(2) Two systems

$$S_i = [\Gamma_i, \{B_i(\gamma) : \gamma \in \Gamma_i\}]$$
 $i = 1, 2$

are **isomorphic** (we write $S_1 \cong S_2$) if and only if there are an isomorphism

$$\varphi \colon \Gamma_1 \longrightarrow \Gamma_2$$

of totally ordered sets, and $\forall \gamma \in \Gamma_1$ an isomorphism of modules

$$\varphi_{\gamma} \colon B_1(\gamma) \longrightarrow B_2(\varphi(\gamma)).$$

(3) Let (M, v) be a valued module, $\Gamma := v(M)$. For $\gamma \in \Gamma$ set

$$M^{\gamma} := \{ x \in M : v(x) \geqslant \gamma \}$$

$$M_{\gamma} := \{ x \in M : v(x) > \gamma \}.$$

Then $M_{\gamma} \subsetneq M^{\gamma} \subsetneq M$. Set

$$B(M,\gamma) := M^{\gamma}/M_{\gamma}.$$

 $B(M, \gamma)$ is the (homogeneous) component corresponding to γ . The skeleton (das skelett) of the valued module (M, v) is the ordered system

$$S(M) := [v(M), \{B(M, \gamma) : \gamma \in v(M)\}].$$

We write $B(\gamma)$ for $B(M, \gamma)$ if the context is clear.

(4) For every $\gamma \in \Gamma$, the **coefficient map** (Koeffizient Abbildung)

$$\pi^{M}(\gamma, -) \colon M^{\gamma} \longrightarrow B(\gamma)$$
$$x \longmapsto x + M_{\gamma}$$

is the canonical projection.

We write $\pi(\gamma, -)$ instead of $\pi^M(\gamma, -)$ if the context is clear.

Lemma 1.7. The skeleton is an isomorphism invariant, i.e.

$$if$$
 $(M_1, v_1) \cong (M_2, v_2),$
 $then$ $S(M_1) \cong S(M_2).$

Proof. Let $h: M_1 \to M_2$ be an isomorphism which preserves the valuation. Then

$$\tilde{h} \colon v(M_1) \longrightarrow v(M_2)$$

defined by

$$\tilde{h}(v_1(x)) := v_2(h(x))$$

is a well defined map and an isomorphism of totally ordered sets.

For $\gamma \in v(M_1)$ the map

$$h_{\gamma} \colon B_1(\gamma) \longrightarrow B_2(\tilde{h}(\gamma))$$

defined by

$$\pi^{M_1}(\gamma, x) \mapsto \pi^{M_2}(\tilde{h}(\gamma), h(x))$$

is well defined and an isomorphism of modules.

2. Hahn valued modules

A system $[\Gamma, \{B(\gamma) : \gamma \in \Gamma\}]$ of torsion-free modules can be realized as the skeleton of a valued module through the following canonical construction:

Consider $\prod_{\gamma \in \Gamma} B(\gamma)$ the product module. For $s \in \prod_{\gamma \in \Gamma} B(\gamma)$ define

$$\mathrm{support}(s) = \{ \gamma \in \Gamma : s(\gamma) \neq 0 \}.$$

The **Hahn sum** $\bigsqcup_{\gamma \in \Gamma} B(\gamma)$ is the submodule of $\prod_{\gamma \in \Gamma} B(\gamma)$ consisting of elements with finite support (i.e. $\bigoplus_{\gamma \in \Gamma} B$) endowed with the valuation:

$$v_{\min} : \bigsqcup_{\gamma \in \Gamma} B(\gamma) \longrightarrow \Gamma \cup \{\infty\}$$

 $v_{\min}(s) = \min \operatorname{support}(s).$

(convention: $\min \emptyset = \infty$).

The **Hann product** $H_{\gamma \in \Gamma} B(\gamma)$ is the submodule of $\prod_{\gamma \in \Gamma} B(\gamma)$ consisting of the elements with well-ordered support equipped with v_{\min} .

We recall that a totally ordered set Γ is **well-ordered** if every non-empty subset of Γ has a least, or equivalently if every descending sequence of elements from Γ is finite.

3. Hahn Sandwich Proposition

Lemma 3.1.

$$(i) \bigsqcup_{\gamma \in \Gamma} B(\gamma) \subseteq H_{\gamma \in \Gamma} B(\gamma).$$

(ii)

$$\begin{split} S(\bigsqcup_{\gamma \in \Gamma} B(\gamma)) & \cong \left[\Gamma, \{ B(\gamma) : \gamma \in \Gamma \} \right] \\ & \cong S(\mathcal{H}_{\gamma \in \Gamma} B(\gamma)). \end{split}$$

We shall show that if Z=Q is a field and (V,v) is a valued Q-vector space with skeleton $S(V)=[\Gamma,B(\gamma)]$, then

$$(\bigsqcup B(\gamma), v_{\min}) \ \hookrightarrow \ (V, v) \ \hookrightarrow \ (\mathcal{H}_{\gamma \in \Gamma} \, B(\gamma), v_{\min}).$$