REAL ALGEBRAIC GEOMETRY LECTURE NOTES

(24: 21/01/10)

SALMA KUHLMANN

Contents

1. Hahn Sandwich Proposition 1
2. Immediate extensions 1
3. Valuation independence 2
4. Maximal valuation independence 3
5. Valuation basis 4

1. Hahn Sandwich Proposition

From now, let $Z=Q$ be a field and (V, v) a valued Q-vector space with skeleton $S(V)=[\Gamma, B(\gamma)]$. We want to show

$$
\left(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min }\right) \hookrightarrow(V, v) \hookrightarrow\left(\mathrm{H}_{\gamma \in \Gamma} B(\gamma), v_{\min }\right) .
$$

2. Immediate extensions

Definition 2.1. Let $\left(V_{i}, v_{i}\right)$ be valued Q-vector spaces $(i=1,2)$.
(1) Let $V_{1} \subseteq V_{2} Q$-subspace with $v_{1}\left(V_{1}\right) \subseteq v_{2}\left(V_{2}\right)$. We say that $\left(V_{2}, v_{2}\right)$ is an extension of (V_{1}, v_{1}), and we write

$$
\left(V_{1}, v_{1}\right) \subseteq\left(V_{2}, v_{2}\right),
$$

if $v_{\left.2\right|_{V_{1}}}=v_{1}$.
(2) If $\left(V_{1}, v_{1}\right) \subseteq\left(V_{2}, v_{2}\right)$, for $\gamma \in v_{1}\left(V_{1}\right)$ the map

$$
\begin{aligned}
B_{1}(\gamma) & \longrightarrow B_{2}(\gamma) \\
x+\left(V_{1}\right)_{\gamma} & \mapsto x+\left(V_{2}\right)_{\gamma}
\end{aligned}
$$

is a natural identification of $B_{1}(\gamma)$ as a Q-subspace of $B_{2}(\gamma)$. The extension $\left(V_{1}, v_{1}\right) \subseteq\left(V_{2}, v_{2}\right)$ is immediate if $\Gamma:=v_{1}\left(V_{1}\right)=v_{2}\left(V_{2}\right)$ and $\forall \gamma \in v_{1}\left(V_{1}\right)$

$$
B_{1}(\gamma)=B_{2}(\gamma) .
$$

Equivalently, $\left(V_{1}, v_{1}\right) \subseteq\left(V_{2}, v_{2}\right)$ is immediate if $S\left(V_{1}, v_{1}\right)=S\left(V_{2}, v_{2}\right)$.

Lemma 2.2. (Characterization of immediate extensions)
The extension $\left(V_{1}, v_{1}\right) \subseteq\left(V_{2}, v_{2}\right)$ is immediate if and only if

$$
\forall x \in V_{2}, x \neq 0, \exists y \in V_{1} \quad \text { such that } v_{2}(x-y)>v_{2}(x)
$$

Proof. We show that in a valued Q-vector space (V, v), for every $x, y \in V$

$$
v(x-y)>v(x) \Longleftrightarrow \begin{cases}(i) & \gamma=v(x)=v(y) \text { and } \\ (i i) & \pi(\gamma, x)=\pi(\gamma, y) .\end{cases}
$$

(\Leftarrow) Assume (i) and (ii). So $x, y \in V^{\gamma}$ and $x-y \in V_{\gamma}$.
Then $v(x-y)>v(x)=\gamma$.
(\Rightarrow) Assume $v(x-y)>v(x)$. We show (i) and (ii).
If $v(x) \neq v(y)$, then $v(x-y)=\min \{v(x), v(y)\}$. In both cases $\min \{v(x), v(y)\}=v(x)$ and $\min \{v(x), v(y)\}=v(y)$ we have a contradiction. (ii) is analogue.

Example 2.3. $\left(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\text {min }}\right) \subseteq\left(\mathrm{H}_{\gamma \in \Gamma} B(\gamma), v_{\text {min }}\right)$
is an immediate extension.
Proof. Given $x \in \mathrm{H}_{\gamma \in \Gamma} B(\gamma), x \neq 0$, set

$$
\gamma_{0}:=\min \operatorname{support}(x) \quad \text { and } \quad x\left(\gamma_{0}\right):=b_{0} \in B(\gamma)
$$

Let $y \in \bigsqcup_{\gamma \in \Gamma} B(\gamma)$ such that

$$
y(\gamma)= \begin{cases}0 & \text { if } \gamma \neq \gamma_{0} \\ b_{0} & \text { if } \gamma=\gamma_{0}\end{cases}
$$

Namely $y=b_{0} \chi_{\gamma_{0}}$, where

$$
\begin{gathered}
\chi_{\gamma_{0}}: \Gamma \longrightarrow Q \\
\chi_{\gamma_{0}}(\gamma)= \begin{cases}1 & \text { if } \gamma=\gamma_{0} \\
0 & \text { if } \gamma \neq \gamma_{0}\end{cases}
\end{gathered}
$$

Then $v_{\min }(x-y)>\gamma_{0}=v_{\min }(x)$ (because $(x-y)\left(\gamma_{0}\right)=x\left(\gamma_{0}\right)-y\left(\gamma_{0}\right)=$ $\left.b_{0}-b_{0}=0\right)$.

3. VALUATION INDEPENDENCE

Definition 3.1. $\mathcal{B}=\left\{x_{i}: i \in I\right\} \subseteq V \backslash\{0\}$ is Q-valuation independent if for $q_{i} \in Q$ with $q_{i}=0$ for all but finitely many $i \in I$, we have

$$
v\left(\sum_{i \in I} q_{i} x_{i}\right)=\min _{i \in I, q_{i} \neq 0}\left\{v\left(x_{i}\right)\right\}
$$

Remark 3.2. $\mathcal{B} \subseteq V \backslash\{0\} Q$-valuation independent $\Rightarrow Q$-linear independent.
(Otherwise $\exists q_{i} \neq 0$ with $\sum q_{i} x_{i}=0$ and $\left.v\left(\sum q_{i} x_{i}\right)=\infty\right)$.

Proposition 3.3. (Characterization of valuation independence)
Let $\mathcal{B} \subseteq V \backslash\{0\}$. Then \mathcal{B} is Q-valuation independent if and only if $\forall n \in \mathbb{N}, \forall b_{1}, \ldots, b_{n} \in \mathcal{B}$ pairwise distinct with $v\left(b_{1}\right)=\cdots=v\left(b_{n}\right)=\gamma$, the coefficients

$$
\pi\left(\gamma, b_{1}\right), \ldots, \pi\left(\gamma, b_{n}\right) \in B(\gamma)
$$

are Q-linear independent in $B(\gamma)$.
Proof.
(\Rightarrow) Let $b_{1}, \ldots, b_{n} \in \mathcal{B}$ with $v\left(b_{1}\right)=\cdots=v\left(b_{n}\right)=\gamma$ and suppose for a contradiction that

$$
\pi\left(\gamma, b_{1}\right), \ldots, \pi\left(\gamma, b_{n}\right) \in B(\gamma)
$$

are not Q-linear independent. So there are $q_{1}, \ldots, q_{n} \in Q$ non-zero such that $\pi\left(\gamma, \sum q_{i} b_{i}\right)=0$ and $v\left(q_{i} b_{i}\right)>\gamma$, contradiction.
(\Leftarrow) We show that

$$
v\left(\sum q_{i} b_{i}\right)=\min \left\{v\left(b_{i}\right)\right\}=\gamma .
$$

Since $\pi\left(\gamma, b_{1}\right), \ldots, \pi\left(\gamma, b_{n}\right)$ are Q-linear independent in $B(\gamma)$, also

$$
\pi\left(\gamma, \sum_{i=0}^{n} q_{i} b_{i}\right) \neq 0
$$

i.e. $v\left(\sum q_{i} b_{i}\right) \leqslant \gamma$.

On the other hand $v\left(\sum q_{i} b_{i}\right) \geqslant \gamma$, so $v\left(\sum q_{i} b_{i}\right)=\gamma=\min \left\{v\left(b_{i}\right)\right\}$.

4. Maximal valuation independence

By Zorn's lemma, maximal valuation independent sets exist:
Corollary 4.1. (Characterization of maximal valuation independent sets)
$\mathcal{B} \subseteq V \backslash\{0\}$ is maximal valuation independent if and only if $\forall \gamma \in v(V)$

$$
\mathcal{B}_{\gamma}:=\{\pi(\gamma, b): b \in \mathcal{B} ; v(b)=\gamma\}
$$

is a Q-vector space basis of $B(V, \gamma)$.

Corollary 4.2. Let $\mathcal{B} \subseteq V \backslash\{0\}$ be valuation independent in (V, v). Then \mathcal{B} is maximal valuation independent if and only if the extension

$$
\langle\mathcal{B}\rangle:=\left(V_{0}, v_{\mid V_{0}}\right) \subseteq(V, v)
$$

is an immediate extension.
Proof.
(\Rightarrow) Assume $\mathcal{B} \subseteq V$ is maximal valuation independent. We show $V_{0} \subseteq V$ is immediate.

If not $\exists x \in V, x \neq 0$ such that

$$
\forall y \in V_{0}: v(x-y) \leqslant v(x) .
$$

We will show that in this case $\mathcal{B} \cup\{x\}$ is valuation independent (which will contradict our maximality assumption).

Consider $v\left(y_{0}+q x\right), q \in Q, q \neq 0, y_{0} \in V_{0}$. Set

$$
y:=-y_{0} / q .
$$

We claim that $v\left(y_{0}+q x\right)=v(x-y)=\min \{v(x), v(y)\}$
Fact.

$$
v(x-y) \leqslant v(x) \Longleftrightarrow v(x-y)=\min \{v(x), v(y)\} .
$$

Proof of the fact. (\Leftarrow) is clear. To see (\Rightarrow), assume that $v(x-y)>$ $\min \{v(x), v(y)\}$. If $\min \{v(x), v(y)\}=v(x)$, then we have a contradiction. If $\min \{v(x), v(y)\}=v(y)<v(x)$, then $v(x-y)=v(y)>$ $v(y)$, again a contradiction.
(\Leftarrow) Now assume $\left(V_{0}, v\right) \subseteq(V, v)$ is immediate. We show that \mathcal{B} is maximal valuation independent.

If not, there is $\gamma \in v(V)$ such that B_{γ} is not a basis for $B(V, \gamma)$.
Let $b \in B(V, \gamma), b \notin\left\langle\mathcal{B}_{\gamma}\right\rangle$.

$$
b \in V^{\gamma} / V_{\gamma} \Longrightarrow b=x+V_{\gamma}
$$

with $x \in V, v(x)=\gamma$.
Claim: $\forall y \in V_{0} v(x-y) \leqslant v(x)$ (contradicting that the extension is immediate). This follows by Characterization of immediate extensions (Lemma 2.2).

5. Valuation basis

Definition 5.1. \mathcal{B} is a Q-valuation basis of (V, v) if
(1) \mathcal{B} is a Q-basis,
(2) \mathcal{B} is Q-valuation independent.

Remark 5.2. $\mathcal{B} Q$-valuation basis $\Rightarrow \mathcal{B}$ is maximal valuation independent.
Example 5.3. $\left(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\text {min }}\right)$ admits a valuation basis.
Proof. Let \mathcal{B}_{γ} be a Q-basis of $B(\gamma)$ for $\gamma \in \Gamma$ and consider

$$
\mathcal{B}:=\bigcup_{\gamma \in \Gamma}\left\{b \chi_{\{\gamma\}} ; b \in \mathcal{B}_{\gamma}\right\},
$$

where $\forall \gamma \in \Gamma$

$$
\chi_{\gamma}: \Gamma \longrightarrow Q
$$

$$
\chi_{\gamma}\left(\gamma^{\prime}\right)= \begin{cases}1 & \text { if } \gamma=\gamma^{\prime} \\ 0 & \text { if } \gamma \neq \gamma^{\prime}\end{cases}
$$

Corollary 5.4. (V, v) with skeleton $S(V)=[\Gamma, B(\gamma)]$ admits a valuation basis if and only if

$$
(V, v) \cong\left(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min }\right) .
$$

Proof.
(\Leftarrow) Clear.
(\Rightarrow) Let \mathcal{B} be a valuation basis for (V, v). Then $\mathcal{B}=\left\{b_{i}: i \in I\right\}$ is maximal valuation independent. For every $b_{i} \in \mathcal{B}, v\left(b_{i}\right)=\gamma$, define

$$
h\left(b_{i}\right)=\pi\left(\gamma, b_{i}\right) \chi_{\gamma}
$$

and extend it to V by linearity (note that $v\left(b_{i}\right)=v_{\min }\left(h\left(b_{i}\right)\right)$).

Corollary 5.5. Assume $S(V)=[\Gamma, B(\gamma)]$. Then

$$
\left(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min }\right) \hookrightarrow(V, v) .
$$

Proof. By Zorn's lemma, let $\mathcal{B} \subset V \backslash\{0\}$ be maximal valuation independent. Set

$$
V_{0}:={ }_{Q}\langle\mathcal{B}\rangle .
$$

Then \mathcal{B} is a valuation basis for V_{0} and $V_{0} \subseteq V$ (immediate), so $S\left(V_{0}\right)=$ $S(V)=[\Gamma, B(\gamma)]$ and

$$
\left(V_{0}, v\right) \cong\left(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min }\right)
$$

