REAL ALGEBRAIC GEOMETRY LECTURE NOTES (30: 11/02/10)

SALMA KUHLMANN

Contents

1.	Convex valuations	1
2.	Comparison of convex valuations	2
3.	The rank of ordered fields	3
4.	Convex valuations and convex subgroups	3

1. Convex valuations

Let K be a non-archimedean ordered field. Let v be its non-trivial natural valuation with valuation ring R_v and valuation ideal I_v .

Remark 1.1.

- (1) R_v/I_v is archimedean.
- (2) R_v is the convex hull of \mathbb{Q} in K.

Let w be any valuation of K with valuation ring R_w , valuation ideal I_w and residue field $K_w := R_w/I_w$.

Definition 1.2. We say that w is compatible with the order if $\forall a, b \in K$

$$0 < a \leqslant b \implies w(a) \geqslant w(b).$$

Compatible valuations are also called **convex valuations**.

Example 1.3. The natural valuation is compatible with the order.

Remark 1.4. We recall that a subset *C* of a totally ordered set *X* is said to be **convex** if $\forall c_1, c_2 \in C$ and $x \in X$:

$$c_1 < x < c_2 \implies x \in C.$$

If C is a subgroup of an ordered abelian group A, equivalently C is convex if and only if $\forall c \in C$ and $a \in A$:

$$0 < a < c \implies a \in C.$$

Proposition 1.5. (Characterization of convex valuations). The following are equivalent:

- (1) w is compatible with the order of K.
- (2) R_w is convex.
- (3) I_w is convex.
- (4) $I_w < 1.$
- (5) $1 + I_w \subseteq K^{>0}$.
- (6) The residue map

$$\begin{array}{rccc} R_w & \longrightarrow & R_w/I_w \\ a & \mapsto & a+I_w \end{array}$$

induces an ordering on K_w given by

$$a + I_w \ge 0 \iff a \ge 0.$$

(7) The set

$$\mathcal{U}_w^{>0} := \{ a \in K : w(a) = 0 \land a > 0 \}$$

of positive units is a convex subgroup of $(K^{>0}, \cdot, 1, <)$.

Proof. (1) \Rightarrow (2). $0 \leq a \leq b \in R_w \Rightarrow w(a) \geq w(b) \geq 0$.

 $(2) \Rightarrow (3).$ Let $a, b \in K$ with $0 < a < b \in I_w$. Since w(b) > 0, it follows that $w(b^{-1}) = -w(b) < 0$ and then $b^{-1} \notin R_w$. Therefore also $a^{-1} \notin R_w$, because $0 < b^{-1} < a^{-1}$ and R_w is convex by

assumption. Hence w(a) > 0 and $a \in I_w$.

 $(3) \Rightarrow (4)$. Otherwise $1 \in I_w$ but w(1) = 0, contradiction.

 $(4) \Rightarrow (5)$. Clear.

2. Comparison of convex valuations

Let w and w' be valuations on K. We say that w' is **finer** than w or w is **coarser** than w' if w' has a smallest valuation ring, i.e. if

$$R_{w'} \subsetneq R_w.$$

Lemma 2.1.

(1) $R_{w'} \subsetneq R_w$ if and only if $I_w \subsetneq I_{w'}$.

- (2) If w' is convex and $R_{w'} \subsetneq R_w$, then w is also convex.
- (3) The set \mathcal{R} of all convex valuation rings R_w is totally ordered by inclusion.
- (4) The natural valuation is the finest convex valuation, i.e.

 $R_v \subsetneq R_w,$

for every convex valuation $w \neq v$.

3. The rank of ordered fields

Definition 3.1. Let K be an ordered field with natural valuation v. The set \mathcal{R} of all valuation rings R_w of convex valuations $w \neq v$ is called the **rank** of K.

Examples 3.2.

- The rank of an archimedean ordered field is empty since its natural valuation is trivial.
- The rank of the rational function field $K = \mathbb{R}(t)$ with any order is a singleton.

4. Convex valuations and convex subgroups

Notation 4.1. For simplicity we denote by w(K) the value group of a valuation w on K (even if $w(0) = \infty$).

To every convex valuation w on K we associate a convex subgroup G_w of v(K), namely

$$G_w := \{ v(a) : a \in K \land w(a) = 0 \} = v(\mathcal{U}_w^{>0}).$$

Proposition 4.2.

$$w(K) \cong v(K)/G_w$$

canonically.

Proof. The map

$$v(K)/G_w \longrightarrow w(K)$$

 $v(a) + G_w \mapsto w(a)$

is well defined and an isomorphism.

3

SALMA KUHLMANN

We call G_w the convex subgroup associated to w. Note that the convex subgroup G_v associated to the natural valuation v is

$$G_v = \{0\}.$$

Conversely, given a convex subgroup G_w of v(K) we define a map:

$$w: K \longrightarrow v(K)/G_w \cup \{\infty\}$$

$$0 \neq a \mapsto v(a) + G_w$$

$$0 \mapsto \infty$$

Then w is a convex valuation with $v(\mathcal{U}_w^{>0}) = G_w$. We call w the convex valuation associated to G_w .

We have proved the following theorem:

Theorem 4.3. There is a bijection between the set of convex valuations on an ordered field K and the set of convex subgroups of the value group v(K) associated to the natural valuation v.