Fachbereich
Mathematik und Statistik
Universität
Konstanz
  Logo der Universität Konstanz
Schwerpunkt Analysis und Numerik > Michael Dreher

Local solutions of fully nonlinear weakly hyperbolic differential equations in Sobolev spaces

M. Dreher and M. Reissig

Abstract. The goal of the present paper is to study fully nonlinear weakly hyperbolic equations of second order with space- and time degeneracy. A local existence result in Sobolev spaces under sharp Levi conditions of C^\infty type is proved. These Levi conditions and the behaviour of the nonlinearities determine the required smoothness of the data and the loss of Sobolev regularity

Hokkaido Math. J. Vol. 27, No. 2 (1998), 337-381.


The paper is available here: pdf