Am Fachbereich Mathematik und Statistik der Universität Konstanz
findet am
Donnerstag 10. und Freitag 11. Februar 2011
ein
Ricci flow Workshop
statt.
P r o g r a m m
D o n n e r s t a g , 1 0 . F e b r u a r
13:00-14:00 Introduction to Ricci
flow Raum F 426
Geometry and Ricci flow (A. Chau)
Partial differential equations and Ricci flow (T. Lamm)
Positive Ricci curvature in three dimensions (M. Makowski)
A glimpse on Perelman's result (M. Simon)
14:30-15:30
Miles
Simon (Universität Freiburg) Raum F 426
Expanding solitons with non-negative curvature operator coming out of cones
We show that a Ricci flow of any complete Riemannian manifold without
boundary with bounded non-negative curvature operator and non-zero
asymptotic volume ratio exists for all time and has constant
asymptotic volume ratio. We show that there is a limit solution,
obtained by scaling down this solution at a fixed point in space,
which is an expanding soliton coming out of the asymptotic cone at
infinity.
- - - K a f f e e p a u s e ( c o f f e e
b r e a k ) - - -
16:15-17:15 Albert Chau
(University of British Columbia, Vancouver) Raum F 426
Kähler-Ricci flow and the parabolic Monge-Ampère equation
17:30-18:30
Christoph Böhm
(Universität Münster) Raum F 426
Second best Einstein metric in higher dimensions
- - - 1 9 : 3 0 A b e n d e s s e n ( d i n n e r ) - - -
F r e i t a g , 1 1 . F e b r u a r
08:30-09:30
Tobias Lamm
(Universität Frankfurt) Raum F 426
Parabolic systems with rough initial data
Together with Herbert Koch we study parabolic systems with rough
initial data. Examples include the mean curvature flow for Lipschitz
initial data, the harmonic map flow with BMO initial data and the
Ricci flow with measurable metrics as initial data. We consider small
perturbations of smooth data in the spaces of Lipschitz functions, BMO
functions respectively bounded metrics.