Workshop on Ricci flow


Am Fachbereich Mathematik und Statistik der Universität Konstanz
findet am

Donnerstag 10. und Freitag 11. Februar 2011

ein

Ricci flow Workshop

statt.

Ricci flow equation



D o n n e r s t a g ,   1 0 .   F e b r u a r


13:00-14:00   Introduction to Ricci flow   Raum F 426

  • Geometry and Ricci flow (A. Chau)
  • Partial differential equations and Ricci flow (T. Lamm)
  • Positive Ricci curvature in three dimensions (M. Makowski)
  • A glimpse on Perelman's result (M. Simon)

14:30-15:30   Miles Simon (Universität Freiburg)   Raum F 426

    Expanding solitons with non-negative curvature operator coming out of cones

    We show that a Ricci flow of any complete Riemannian manifold without boundary with bounded non-negative curvature operator and non-zero asymptotic volume ratio exists for all time and has constant asymptotic volume ratio. We show that there is a limit solution, obtained by scaling down this solution at a fixed point in space, which is an expanding soliton coming out of the asymptotic cone at infinity.

- - -   K a f f e e p a u s e   ( c o f f e e   b r e a k )  - - -


16:15-17:15   Albert Chau (University of British Columbia, Vancouver)   Raum F 426

    Kähler-Ricci flow and the parabolic Monge-Ampère equation


17:30-18:30   Christoph Böhm (Universität Münster)   Raum F 426

    Second best Einstein metric in higher dimensions


- - -   1 9 : 3 0   A b e n d e s s e n   ( d i n n e r )   - - -


F r e i t a g ,   1 1 .   F e b r u a r


08:30-09:30   Tobias Lamm (Universität Frankfurt)   Raum F 426

    Parabolic systems with rough initial data

    Together with Herbert Koch we study parabolic systems with rough initial data. Examples include the mean curvature flow for Lipschitz initial data, the harmonic map flow with BMO initial data and the Ricci flow with measurable metrics as initial data. We consider small perturbations of smooth data in the spaces of Lipschitz functions, BMO functions respectively bounded metrics.

Organisiert von Eva Dutt und Oliver Schnürer.