Definition

$$\mathbb{F} \text{ "Filter (auf \mathfrak{R})"} : \iff \begin{cases} \mathbb{F} \in \mathbb{P}'(\mathbb{P}'(\mathfrak{R})) & (d. \ h. \ ...) \\ \mathbb{F} \ni F \subset G \subset \mathfrak{R} \implies G \in \mathbb{F} \\ F, G \in \mathbb{F} \implies F \cap G \in \mathbb{F} \end{cases}$$

$$\mathbb{F}_0 \text{ "Filterbasis (auf }\mathfrak{R})\text{" ("FB")}: \iff \begin{cases} \mathbb{F}_0 \in \mathbb{P}'(\mathbb{P}'(\mathfrak{R})) \\ F,G \in \mathbb{F}_0 \implies \exists \, H \in \mathbb{F}_0 \quad H \subset F \cap G \end{cases}$$

 $F\ddot{u}r \ \mathbb{H} \in \mathbb{P}'(\mathbb{P}'(\mathfrak{R}))$

$$[\mathbb{H}] := \{ A \subset \mathfrak{R} \mid \exists H \in \mathbb{H} \mid H \subset A \} \quad (\supset \mathbb{H})$$

3.1 Bemerkung $F\ddot{u}r \ \mathbb{H} \in \mathbb{P}'(\mathbb{P}'(\mathfrak{R}))$

 \mathbb{H} Filterbasis \iff $[\mathbb{H}]$ Filter

Beweis: \Box

Bezeichnung Falls \mathbb{F}_0 Filterbasis und $\mathbb{F} := [\mathbb{F}_0]$ (Filter):

 \mathbb{F}_0 "Filterbasis von \mathbb{F} ", \mathbb{F} "von \mathbb{F}_0 erzeugter Filter".

 $\mathbb{F}_1, \mathbb{F}_2$ Filterbasen auf \mathfrak{R} :

$$\mathbb{F}_{1} \leq \mathbb{F}_{2} : \iff [\mathbb{F}_{1}] \subset [\mathbb{F}_{2}]
\iff \mathbb{F}_{1} \subset [\mathbb{F}_{2}]
\iff \forall F_{1} \in \mathbb{F}_{1} \quad \exists F_{2} \in \mathbb{F}_{2} \quad F_{2} \subset F_{1}
\iff : \mathbb{F}_{1} \quad qr\ddot{o}ber\text{" als } \mathbb{F}_{2} \iff : \mathbb{F}_{2} \quad geiner\text{" als } \mathbb{F}_{1}$$

Die Relation \leq (zwischen Filterbasen auf \Re) ist reflexiv und transitiv.

3.2 Bemerkung $\mathfrak{R}, \mathfrak{S}$ nicht-leere Mengen; $f: \mathfrak{R} \longrightarrow \mathfrak{S}, \mathbb{F}_0$ FB auf \mathfrak{R} :

$$f(\mathbb{F}_0) := \{ f(F) : F \in \mathbb{F}_0 \}$$
 FB auf \mathfrak{S} ("Bild von \mathbb{F}_0 unter f ").

Beweis: \Box

Beispiele

- (B1) $\emptyset \neq A \subset \mathfrak{R}; \mathbb{F}_0 = \{A\}$ (FB)
- (B2) \mathfrak{R} unendlich; $\mathbb{F} := \{ A \mid A \subset \mathfrak{R} \land \widetilde{A} \text{ endlich} \}$ (Filter)
- (B3) $\mathfrak{R} = \mathbb{N}, \mathbb{F} \text{ dazu gemäß (B2); dann}$

$$\mathbb{F} = \left\{ A \mid A \subset \mathbb{N} \ \land \ \exists \, n \in \mathbb{N} \quad \forall \, m \ge n \quad m \in A \right\}$$

(B4)
$$\mathfrak{S} \neq \emptyset, \alpha \colon \mathbb{N} \longrightarrow \mathfrak{S}, \mathbb{F} \text{ gemäß (B3)}$$

$$\mathbb{F}(\alpha) := [\alpha(\mathbb{F})] = \{B \mid B \subset \mathfrak{S} \ \land \ \exists \, n \in \mathbb{N} \quad \forall \, m \geq n \quad \alpha(m) \in B\}$$
 ("Fréchet-Filter (der Folge α)")

(B5)
$$(\mathfrak{R}, \mathbb{O})$$
 TR $(\mathbb{O} \longmapsto \mathbb{U})$; für $x \in \mathfrak{R}$ ist \mathbb{U}_x Filter $((U0) - (U3))$ mit FB

$$\mathbb{O}_x := \{O \in \mathbb{O} : x \in O\}.$$

Nur erwähnen wollen wir im Moment schon einmal die

Definition

Ein Filter \mathbb{F} auf \mathfrak{R} heißt "Ultrafilter (auf \mathfrak{R})" genau dann, wenn kein Filter \mathbb{G} auf \mathfrak{R} existiert mit $\mathbb{F} \subsetneq \mathbb{G}$.

Eine Filterbasis \mathbb{F}_0 auf \mathfrak{R} heißt "Ultrafilterbasis (auf \mathfrak{R})" genau dann, wenn $[\mathbb{F}_0]$ Ultrafilter ist.

Zu wichtigen Aussagen über Ultrafilter kommen wir erst später.

Ist $(\mathfrak{R}, \mathbb{O})$ TR, dann heißt jede Filterbasis von \mathbb{U}_x eine "Umgebungsbasis" $(x \in \mathfrak{R})$. (auch: ,lokale Basis').

Z. B. bilden in einem SMR (\mathfrak{R}, δ) für $x \in \mathfrak{R}$

$$\left\{U_x^\varepsilon:\varepsilon>0\right\},\quad \left\{K_x^\varepsilon:\varepsilon>0\right\}\quad \text{und}\quad \left\{U_x^\frac{1}{n}:n\in\mathbb{N}\right\}$$

Umgebungsbasen.

$$\mathbb{B} \subset \mathbb{O} \text{ heißt } "Basis \text{ (von } \mathbb{O})": \iff \forall O \in \mathbb{O} \quad \exists \, \mathbb{B}_1 \subset \mathbb{B} \quad O = \bigcup_{\mathbb{B}_1} B$$

$$\iff \forall O \in \mathbb{O} \quad \forall x \in O \quad \exists \, B \in \mathbb{B} \quad x \in B \subset O$$

$$\mathbb{S} \subset \mathbb{O} "Subbasis \text{ (von } \mathbb{O})": \iff \left\{ \bigcap_{\mathbb{S}_1} S : \mathbb{S} \supset \mathbb{S}_1 \text{ endlich} \right\} \quad \text{Basis (von } \mathbb{O})$$

 $\left\langle \left\{ \left|a,b\right|:a,b\in\mathbb{Q}\ \wedge\ a\leq b\right\} \text{ bildet ein (abzählbare!) Basis der (üblichen) Topologie auf }\mathbb{R}.\right\rangle$

4 Stetigkeit und Konvergenz

Für $(\mathfrak{R}, \mathbb{O})$ TR, $a \in \mathfrak{R}$ und $\alpha \colon \mathbb{N} \longrightarrow \mathfrak{R}$ definiert man in naturgemäßer Verallgemeinerung der Überlegungen aus AI, AII:

$$\alpha(n) \longrightarrow a \quad (n \xrightarrow{} \infty) : \iff \forall U \in \mathbb{U}_a \quad \exists n \in \mathbb{N} \quad \forall m \ge n \quad \alpha(m) \in U$$

lassen wir meist wieder weg!

Mit dem oben eingeführten Fréchet-Filter zu α bedeutet dies gerade:

$$\alpha(n) \longrightarrow a \iff \mathbb{U}_a \subset \mathbb{F}(\alpha)$$

Dies führt zur verallgemeinernden

Definition $F\ddot{u}r FB \mathbb{F}_0 auf \mathfrak{R}$

$$\mathbb{F}_0 \longrightarrow a : \iff \mathbb{U}_a \leq \mathbb{F}_0 \iff \forall U \in \mathbb{U}_a \quad \exists F \in \mathbb{F}_0 \quad F \subset U$$

(\leadsto übliche Sprechweisen: a "Grenzwert", " \mathbb{F}_0 konvergiert gegen a" usw.) Achtung: Ein Grenzwert ist nicht notwendig eindeutig.

4.1 Bemerkung $F\ddot{u}r A \subset \mathfrak{R}$:

$$a \in \overline{A} \iff \exists \mathbb{F}_0 FB \ [\mathbb{F}_0 \longrightarrow a \land \forall F \in \mathbb{F}_0 \ F \subset A]$$

Beweis:

$$\Longrightarrow$$
: $\forall U \in \mathbb{U}_a \quad U \cap A \neq \emptyset$: $\mathbb{F}_0 := \mathbb{U}_a \cap A := \{U \cap A : U \in \mathbb{U}_a\} \text{ FB mit } [\dots]$

$$\iff \text{r. S.} \implies \forall U \in \mathbb{U}_a \quad \exists F \in \mathbb{F}_0 \quad F \subset U, \quad \text{also}$$

$$\text{r. S.} \implies \forall U \in \mathbb{U}_a \quad \exists F \in \mathbb{F}_0 \quad A \cap U \supset F \cap U = F \neq \emptyset$$

In AII (Seite 13) haben wir (im wesentlichen) gezeigt:

4.2 Bemerkung Ist (\mathfrak{R}, δ) SMR, dann: $a \in \overline{A} \iff Es \ existieren \ x_k \in A \ (k \in \mathbb{N}) \ mit \ x_k \longrightarrow a$

Es seien nun $(\mathfrak{R}_{\nu}, \mathbb{O}_{\nu})$ topologische Räume $(\mathbb{O}_{\nu} \longmapsto \mathbb{U}^{\nu}, \mathbb{A}_{\nu}, \ldots)$ $(\nu = 1, 2, 3),$ $f: \mathfrak{R}_{1} \longrightarrow \mathfrak{R}_{2}, a \in \mathfrak{R}_{1}$

$$\begin{array}{ll} \textbf{Definition} & f \text{ ,in a stetig"} \colon \iff \forall \, U \in \mathbb{U}^2_{f(a)} & \exists \, V \in \mathbb{U}^1_a & f(V) \subset U \\ & \stackrel{\checkmark}{\iff} \mathbb{U}^2_{f(a)} \, \leq \, f(\mathbb{U}^1_a) \, \iff \forall \, U \in \mathbb{U}^2_{f(a)} & f^{-1}(U) \in \mathbb{U}^1_a \\ \end{array}$$

4.3 Bemerkung Sind \mathbb{B}^1_a bzw. $\mathbb{B}^2_{f(a)}$ Umgebungsbasen von \mathbb{U}^1_a bzw. $\mathbb{U}^2_{f(a)}$, dann gilt: f in a stetig $\iff \mathbb{B}^2_{f(a)} \leq f(\mathbb{B}^1_a)$

 $Beweis: \square \square \square$

4.4 Folgerung Falls $(\mathfrak{R}_{\nu}, \delta_{\nu})$ SMRe $(\nu = 1, 2)$

 $f \text{ in a stetig} \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in \mathfrak{R}_1 \quad \delta_1(x,a) < \delta \implies \delta_2(f(x),f(a)) < \varepsilon$

4.5 Bemerkung Vor.: f in a stetig, $g: \Re_2 \longrightarrow \Re_3$ in f(a) stetig

Beh.:
$$g \circ f (: \mathfrak{R}_1 \longrightarrow \mathfrak{R}_3)$$
 in a stetig

Vor.: $A \subset \mathfrak{R}_1, p \in \overline{A}, f \text{ in } p \text{ stetig}$ 4.6 Bemerkung

Beh.:
$$f(p) \in \overline{f(A)}$$

Beweis: Zu $U \in \mathbb{U}^2_{f(p)}$ existiert $V \in \mathbb{U}^1_p$ mit $f(V) \subset U$; da $p \in \overline{A}$: $V \cap A \neq \emptyset$, also: $\emptyset \neq f(V \cap A) \subset f(V) \cap f(A) \subset U \cap f(A)$, somit $f(p) \in \overline{f(A)}$

4.7 Bemerkung

$$f \text{ in a stetig} \iff \left[\mathbb{F}_0 FB \text{ auf } \mathfrak{R}_1 \land \mathbb{F}_0 \longrightarrow a \implies f(\mathbb{F}_0) \longrightarrow f(a)\right]$$

Beweis:
$$\Longrightarrow$$
: $\mathbb{F}_0 \longrightarrow a \implies \mathbb{U}_a^1 \leq \mathbb{F}_0 \implies \mathbb{U}_{f(a)}^2 \leq f(\mathbb{U}_a^1) \leq f(\mathbb{F}_0)$
 \Longleftrightarrow : $\mathbb{U}_a^1 \longrightarrow a \implies f(\mathbb{U}_a^1) \longrightarrow f(a) \implies \mathbb{U}_{f(a)}^2 \leq f(\mathbb{U}_a^1)$

4.8 Bemerkung* Falls $(\mathfrak{R}_1, \delta_1)$ SMR:

$$f$$
 in a stetig $\iff \forall (x_n) \in \mathfrak{R}_1^{\mathbb{N}} \quad x_n \longrightarrow a \implies f(x_n) \longrightarrow f(a).$

Beweis:
$$\Box$$

Definition $F\ddot{u}r A \subset \mathfrak{R}_1$:

$$f$$
 "in A stetig": $\iff \forall a \in A$ f in a stetig f "stetig": $\iff f$ in \Re_1 stetig

4.9 Bemerkung

Mit einer Subbasis \mathbb{S}_2 von \mathbb{O}_2 sind äquivalent:

- a) f stetig b) $\forall O \in \mathbb{O}_2$ $f^{-1}(O) \in \mathbb{O}_1$ c) $\forall O \in \mathbb{S}_2$ $f^{-1}(O) \in \mathbb{O}_1$ d) $\forall A \in \mathbb{A}_2$ $f^{-1}(A) \in \mathbb{A}_1$ e) $A \subset \mathfrak{R}_1 \Longrightarrow f(\overline{A}) \subset \overline{f(A)}$

Beweis:

- a) \Longrightarrow e): nach (4.6)
- e) \Longrightarrow d): Zu $A \in \underline{\mathbb{A}}_2$ sei $F := f^{-1}(A)$, dann $f(F) \subset A$, nach e): $f(\overline{F}) \subset \overline{f(F)} \subset \overline{A} \subset A$; somit $\overline{F} \subset f^{-1}(A) = F$
- $d) \Longrightarrow b)$: \checkmark

^{*} Für (4.8) genügt eine Eigenschaft (B1), auf die wir erst später eingehen.

Topologie 15

- b) \Longrightarrow c): trivial
- $c) \Longrightarrow b)$:

b)
$$\Longrightarrow$$
 a): $x \in \mathfrak{R}_1$: Zu $U \in \mathbb{U}^2_{f(x)}$ existiert $O \in \mathbb{O}_2$ mit $f(x) \in O \subset U$, dann $x \in f^{-1}(O) \in \mathbb{O}_1$, also $f^{-1}(O) \in \mathbb{U}^1_x$ (mit $f(f^{-1}(O)) \subset O \subset U$).

Anmerkung Das Bild einer offenen (bzw. abgeschlossenen) Menge unter einer stetigen Abbildung muß nicht offen (...) sein:

1)
$$f(x) := x^2 (x \in \mathbb{R}) : f(]-1,1[) = [0,1[$$

2)
$$f:]0, \infty[\longrightarrow \mathbb{R} \text{ durch: } f(x) := \frac{1}{x} \quad (x \in]0, \infty[) : \quad f([1, \infty[) =]0, 1]$$

Vergleich von Topologien

Es seien $(\mathfrak{R}, \mathbb{O}_1)$ und $(\mathfrak{R}, \mathbb{O}_2)$ topologische Räume $(\mathbb{O}_{\nu} \longmapsto \mathbb{U}^{\nu})$

$$\mathbb{O}_1$$
 "feiner" als $\mathbb{O}_2:\iff \mathbb{O}_2$ "gröber" als $\mathbb{O}_1:\iff \mathbb{O}_2\subset \mathbb{O}_1$

4.10 Bemerkung Folgende Aussagen sind äquivalent:

- a) \mathbb{O}_1 feiner als \mathbb{O}_2
- $b) \quad \forall \, x \in \mathfrak{R} \quad \mathbb{U}^1_x \, \, feiner \, \, als \, \, \mathbb{U}^2_x$

$$c) \quad \forall A \in \mathbb{P}(\mathfrak{R}) \quad \overset{\circ}{A}^{(1)} \supset \overset{\circ}{A}^{(2)}$$

$$d) \quad \forall A \in \mathbb{P}(\mathfrak{R}) \quad \overline{A}^{(1)} \subset \overline{A}^{(2)}$$

$$e)$$
 id: $(\mathfrak{R}, \mathbb{O}_1) \longrightarrow (\mathfrak{R}, \mathbb{O}_2)$ stetig

Beweis: a) \Longrightarrow b): \checkmark , b) \Longrightarrow c): \checkmark , c) \Longrightarrow d): nach (2.3), d) \Longrightarrow e): nach (4.9), e) \Longrightarrow a): \checkmark

5 Initiale Topologien

(Konstruktionsverfahren, um aus gegebenen topologischen Räumen neue zu bilden.)

Es seien E, I nicht-leere Mengen; (F_i, \mathbb{O}_i) topologische Räume,

$$f_i \colon E \longrightarrow F_i \ (i \in I) \quad (\mathbb{O}_i \longmapsto \mathbb{U}^i)$$

Gesucht ist eine Topologie $\mathbb O$ auf dem Ausgangsbereich E, die in dem Sinne zu den gegebenen Abbildungen f_i , paßt', daß sie alle stetig werden. Verfeinert man eine solche

Topologie, so sind die Abbildungen f_i erst recht stetig. Deshalb wählt man \mathbb{O} minimal, d. h. gerade als *qröbste* Topologie, die dies leistet:

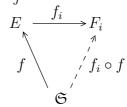
Bezeichnung

$$\mathbb{B} := \left\{ \bigcap_{J} f_{i}^{-1}(O_{i}) : O_{i} \in \mathbb{O}_{i} \quad (i \in J); \ I \supset J \text{ endlich} \right\}$$

$$\mathbb{O} := \left\{ \bigcup_{\mathbb{B}_{1}} B : \mathbb{B}_{1} \subset \mathbb{B} \right\}$$

5.1 Satz

- a) (E, \mathbb{O}) ist ein TR. $(\mathbb{O}$ "initiale Topologie" auf E)
- a') $\mathbb{S}:=\{f_i^{-1}(O_i):i\in I,O_i\in\mathbb{O}_i\}\ ist\ eine\ Subbasis\ von\ \mathbb{O}.$
- b) \mathbb{O} ist die gröbste Topologie auf E derart, daß alle f_i stetig sind.
- c) $F\ddot{u}r \ p \in E \ und \ U \subset E \ gilt:$ $U \ \ ist \ eine \ (\mathbb{O})\text{-}Umgebung \ von \ p$ $\iff Es \ existieren \ J \ endlich \ \subset I, \ U_i \in \mathbb{U}^i_{f_i(p)} \ (i \in J) \ mit \ \bigcap_J f_i^{-1}(U_i) \subset U$ $(\mathfrak{S}, \mathbb{T}) \ TR, \ f \colon \mathfrak{S} \longrightarrow E, \ s \in \mathfrak{S} :$ $f \ stetig \ in \ s \iff \forall i \in I \ f_i \circ f \colon \mathfrak{S} \longrightarrow F_i \ stetig \ in \ s$ $f \longrightarrow f_i \circ f$
- d) $(\mathfrak{S}, \mathbb{T})$ $TR, f: \mathfrak{S} \longrightarrow E, s \in \mathfrak{S}:$ $f \ stetig \ in \ s \iff \forall i \in I \ f_i \circ f: \mathfrak{S} \longrightarrow F_i \ stetig \ in \ s$



Beweis:

- a): $\emptyset, E \in \mathbb{O}$: \checkmark (O1): \checkmark (O2): $\bigcup_{\mathbb{B}_1} B_1 \cap \bigcup_{\mathbb{B}_2} B_2 = \bigcup_{B_{\kappa} \in \mathbb{B}_{\kappa}} B_1 \cap B_2$, also nur zu zeigen: $B_1, B_2 \in \mathbb{B} \implies B_1 \cap B_2 \in \mathbb{B}$: $\square \square \square$
- a'): ✓
- b): Es sei \mathbb{T} eine Topologie auf $E: \forall i \in I \quad f_i: (E, \mathbb{T}) \longrightarrow (F_i, \mathbb{O}_i)$ stetig $\stackrel{(4.9)}{\Longleftrightarrow}$ $\forall i \in I \ \forall O_i \in \mathbb{O}_i \quad f_i^{-1}(O_i) \in \mathbb{T} \iff \mathbb{O} \subset \mathbb{T}$
- U Umgebung von $p \iff$ Es existiert $O \in \mathbb{O}$ mit $p \in O \subset U \iff$ Es existieren J endlich $\subset I$, $O_i \in \mathbb{O}_i$ $(i \in J)$ mit $p \in \bigcap_I f_i^{-1}(O_i) \subset U \iff$,siehe oben'
- d): \Longrightarrow : mit b); \Leftarrow : Zu $U \in \mathbb{U}_{f(s)}$ existieren nach c) J endlich $\subset I$ und $U_i \in \mathbb{U}^i_{f_i(f(s))}$ $(i \in J)$

Topologie 17

mit
$$\bigcap_J f_i^{-1}(U_i) \subset U$$
; daher: $\bigcap_J \underbrace{(f_i \circ f)^{-1}(U_i)}_{\in \mathbb{U}_s} = f^{-1}(\bigcap_J f_i^{-1}(U_i)) \subset f^{-1}(U)$, also $f^{-1}(U) \in \mathbb{U}_s$.

Spezialfälle

0) Urbild-Topologie (Reziproke Topologie):

$$I := \{1\}: \text{ (hier:) } \mathbb{O} \stackrel{\checkmark}{=} \mathbb{B} = \{f_1^{-1}(O_1) : O_1 \in \mathbb{O}_1\}$$

1) Spurtopologie $(\mathfrak{R}, \mathbb{O})$ TR, $\emptyset \neq \mathfrak{M} \subset \mathfrak{R}$

$$I := \{1\}, (F_1, \mathbb{O}_1) := (\mathfrak{R}, \mathbb{O}), E := \mathfrak{M},$$

 $f_1 := \omega \colon \mathfrak{M} \ni x \longmapsto x \in \mathfrak{R} \quad (Einbettung')$

Nach 0) ist die zugehörige initiale Topologie $\mathbb{O}_{\mathfrak{M}}$ gleich

$$\left\{\omega^{-1}(O):O\in\mathbb{O}\right\}\ =\ \left\{O\cap\mathfrak{M}:O\in\mathbb{O}\right\}\ =:\ \mathbb{O}\cap\mathfrak{M}.$$

5.2 Satz

- a) $(\mathfrak{M}, \mathbb{O}_{\mathfrak{M}})$ ist ein TR. $(\mathbb{O}_{\mathfrak{M}}: "Spurtopologie", "induzierte Topologie", "Relativtopologie": <math>\longmapsto \mathbb{A}_{\mathfrak{M}}, \mathbb{U}^{\mathfrak{M}}, \ldots)$.
- b) $\mathbb{O}_{\mathfrak{M}}$ ist die gröbste Topologie auf \mathfrak{M} derart, daß ω stetig ist.
- $c) \quad \forall x \in \mathfrak{M} \quad \mathbb{U}_x^{\mathfrak{M}} = \mathbb{U}_x \cap \mathfrak{M}$
- d) $(\mathfrak{S}, \mathbb{T})$ $TR, f: \mathfrak{S} \longrightarrow \mathfrak{M}, s \in \mathfrak{S}:$ $f \ stetig \ in \ s \iff \omega \circ f \ (: (\mathfrak{S}, \mathbb{T}) \longrightarrow (\mathfrak{R}, \mathbb{O})) \ stetig \ in \ s$
- e) $\mathbb{A}_{\mathfrak{M}} = \mathbb{A} \cap \mathfrak{M}$

Beweis:

- a), b), d): nach (5.1)
- c): Für $x \in \mathfrak{M}$ und $U \subset \mathfrak{M}$: $U \in \mathbb{U}_x^{\mathfrak{M}} \stackrel{(5.1 \text{ c})}{\Longleftrightarrow}$ Es existiert $U_1 \in \mathbb{U}_x$ mit $U_1 \cap \mathfrak{M} = \omega^{-1}(U_1) \subset U \iff U \in \mathbb{U}_x \cap \mathfrak{M}$
- e): Für $A \subset \mathfrak{M}$: $A \in \mathbb{A}_{\mathfrak{M}} \iff \text{Es existiert } O \in \mathbb{O} \text{ mit } A = \mathfrak{M} \setminus (O \cap \mathfrak{M}) = \mathfrak{M} \cap \widetilde{O}$
- $\textbf{5.3 Trivialit"} \qquad \emptyset \neq \mathfrak{N} \subset \mathfrak{M} \subset \mathfrak{R} \colon \qquad \boxed{ \left(\mathbb{O}_{\mathfrak{M}} \right)_{\mathfrak{N}} \ = \ \mathbb{O}_{\mathfrak{N}} }$
- 5.4 Bemerkung $\emptyset \neq \mathfrak{N} \subset \mathfrak{M} \subset \mathfrak{R}$: $\overline{\mathfrak{N}}^{\mathfrak{M}} = \overline{\mathfrak{N}} \cap \mathfrak{M}$

Beweis: Für
$$x \in \mathfrak{M}$$
: $x \in \overline{\mathfrak{N}}^{\mathfrak{M}} \stackrel{(5.2 \text{ c})}{\Longleftrightarrow} \forall U \in \mathbb{U}_x \quad \emptyset \neq (U \cap \mathfrak{M}) \cap \mathfrak{N} = U \cap \mathfrak{N}$

5.5 Bemerkung

Vor.: $(zus \ddot{a}tzlich)$ $(\mathfrak{S}, \mathbb{T})$ $TR, a \in \mathfrak{M}, f : \mathfrak{R} \longrightarrow \mathfrak{S}$

Beh.: α) f stetig in $a \implies f_{/\mathfrak{M}}$ stetig in a β) f stetig in $a \iff f_{/\mathfrak{M}}$ stetig in a

Beweis:

$$\alpha$$
): $f_{/\mathfrak{M}} = f \circ \omega$

$$\beta$$
): $\mathfrak{R} := \mathfrak{S} := \mathbb{R}$ (mit üblicher Topologie) $f := \chi_{\mathbb{Q}}, \mathfrak{M} := \mathbb{Q}$: $f_{/\mathfrak{M}}$ stetig, aber $f\ddot{u}r$ $kein$ $x \in \mathfrak{M}$ ist f stetig in x .

2) Produkttopologie I nicht-leere Menge, $(\mathfrak{R}_i, \mathbb{O}_i)$ TR $(i \in I)$ "Kartesisches Produkt der Mengen \mathfrak{R}_i ": (\leadsto) mengentheoretische Schwierigkeiten)

$$\mathfrak{R} := \prod_{I} \mathfrak{R}_{i} := \left\{ x \mid x \colon I \longrightarrow \bigcup_{I} \mathfrak{R}_{i}, \ \forall j \in I \quad x(j) \in \mathfrak{R}_{j} \right\}$$

Bezeichnung Für $x \in \Re$

$$(x_i)_I := (x(i))_I := x$$

(Wenn I aus dem Zusammenhang heraus klar ist, notieren wir auch $(x_i) := x, ...$); für $j \in I$:

$$x_j$$
 "j-te Koordinate (von x)"
$$p_j \colon \mathfrak{R} \ni x \longmapsto x_j \in \mathfrak{R}_j \quad \text{"Projektion von } \mathfrak{R} \text{ auf } \mathfrak{R}_j \text{"}$$

Für $J \subset I$ und $M_i \subset \mathfrak{R}_i$ $(i \in J)$ ist

$$\bigcap_{I} p_i^{-1}(M_i) = \prod_{I} M_i,$$

wenn $M_i := \mathfrak{R}_i$ für $i \in I \setminus J$.

$$\mathbb{B} := \left\{ \prod_{I} O_i : O_i \in \mathbb{O}_i \ (i \in J), \ O_i = \mathfrak{R}_i \ (i \in I \setminus J); \ J \text{ endlich } \subset I \right\}$$

$$\mathbb{O} := \left\{ \bigcup_{\mathbb{R}_i} B : \mathbb{B}_1 \subset \mathbb{B} \right\}$$

Topologie 19

5.6 Satz

- $(Produktraum\ zu\ ...",\ \mathbb{O}\ Produkt-Topologie")$ $(\mathfrak{R}, \mathbb{O})$ ist ein TR.
- \mathbb{O} ist die gröbste Topologie auf \Re derart, daß alle Projektionen p_i stetig sind.
- Für $p \in \mathfrak{R}$ und $U \subset \mathfrak{R}$ gilt: U ist genau dann eine Umgebung von p, wenn J endlich $\subset I$, $U_i \in \mathbb{U}_{p_i}^i$ $(i \in J)$ $mit \prod_I U_i \subset U$, wobei $U_i := \mathfrak{R}_i$ $(i \in I \setminus J)$, existieren.
- d) $F\ddot{u}r\ (\mathfrak{S},\mathbb{T})\ TR,\ f\colon \mathfrak{S}\longrightarrow \mathfrak{R},\ s\in \mathfrak{S}:$ $f\ stetig\ in\ s\iff \forall\ i\in I\quad p_i\circ f\colon \mathfrak{S}\longrightarrow \mathfrak{R}_i\ stetig\ in\ s$ e) $F\ddot{u}r\ A_i\subset \mathfrak{R}_i\ (i\in I)\colon \boxed{\prod_I\overline{A_i}=\overline{\prod_I}A_i}$ $f)\ \forall\ j\in I\ \forall\ O\in \mathbb{O}\ p_j(O)\in \mathbb{O}_j \qquad (p_j\ ist\ eine\ ,offene'\ Abbildung.)$

Beweis:

- a), b), c), d): nach (5.1) (mit (*))
- $\supset: p_j\left(\prod_I A_i\right) \stackrel{(4.9)}{\subset} \overline{p_j(\prod_I A_i)} = \overline{A_j};$ \subset : $a \in \ell$. S.: Für J endlich $\subset I$ und $U_i \in \mathbb{U}^i_{a_i}$ $(i \in J), U_i := \mathfrak{R}_i$ $(i \in I \setminus J)$ existiert $x_i \in U_i \cap A_i$ $(i \in I)$; damit $x \in \prod_I U_i \cap \prod_I A_i$, also (mit c)) $a \in r$. S.
- f): Ist $B = \prod_{i} O_i$ mit $O_i \in \mathbb{O}_i$ $(i \in I)$, dann ist für $j \in J$

$$p_j(B) = \begin{cases} O_j, & \text{falls } B \neq \emptyset \\ \emptyset, & \text{sonst} \end{cases}$$

also $p_i(B) \in \mathbb{O}_i$ (und das genügt offenbar).

Anmerkung zu (5.6 f):

$$A \in \mathbb{A} \implies p_j(A) \in \mathbb{A}_j \qquad (j \in I)$$

Beispiel: $A := \{(x, y) \in \mathbb{R}^2 : xy = 1\}, p_1(A) = \mathbb{R} \setminus \{0\}$

Supremum von Topologien I nicht-leere Menge, $(\mathfrak{R}, \mathbb{O}_i)$ TR $(i \in I)$ Mit $E := F_i := \mathfrak{R}$ und $f_i := \mathrm{id}_{\mathfrak{R}}$ $(i \in I)$ ist die zugehörige initiale Topologie auf \mathfrak{R} gerade die gröbste Topologie auf \mathfrak{R} , die feiner als alle \mathbb{O}_i ist.

Erzeugte Topologie \mathfrak{R} nicht-leere Menge und $\mathbb{S} \subset \mathbb{P}(\mathfrak{R})$

Die gröbste Topologie \mathbb{T} auf \mathfrak{R} mit $\mathbb{S} \subset \mathbb{T}$ heißt die "von \mathbb{S} erzeugte Bezeichnung Topologie".

- 1. Fall $S = \emptyset$: Die erzeugte Topologie ist $\{\emptyset, \Re\}$.
- 2. Fall $\mathbb{S} \neq \emptyset$: Für $S \in \mathbb{S}$ ist $\mathbb{T}_S := \{\emptyset, S, \Re\}$ eine Topologie auf \Re . Die gesuchte Topologie ist offenbar gerade das Supremum der Topologien \mathbb{T}_S $(S \in \mathbb{S})$. Nach (5.1 a') ist \mathbb{S} eine *Subbasis* dazu.

Finale Topologien 6

(Weiteres wichtiges Verfahren, um aus gegebenen topologischen Räumen neue zu bilden.)

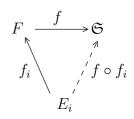
Es seien F, I nicht-leere Mengen; (E_i, \mathbb{O}_i) TRe, $f_i : E_i \longrightarrow F \quad (i \in I) \quad (\mathbb{O}_i \longmapsto \mathbb{U}^i)$

$$\mathbb{O} := \left\{ O \,|\, O \subset F \,\wedge\, \forall\, i \in I \quad f_i^{-1}(O) \in \mathbb{O}_i \right\}$$

Gesucht ist hier eine Topologie $\mathbb O$ im Zielbereich F derart, daß die gegebenen Abbildungen f_i stetig werden. Vergröbert man eine solche Topologie, so sind die Abbildungen f_i erst recht stetig. Deshalb wählt man \mathbb{O} maximal, d.h. gerade als feinste Topologie, die dies leistet:

6.1 Satz

- (F,\mathbb{O}) ist ein TR. $(\mathbb{O}$ "finale Topologie" auf F) \mathbb{O} ist die feinste Topologie auf F derart, da β alle f_i stetig sind. $F\ddot{u}r \ einen \ TR \ (\mathfrak{S},\mathbb{T}) \ und \ eine \ Abbildung \ f \colon F \longrightarrow \mathfrak{S} \ gilt \colon f \colon (F,\mathbb{O}) \longrightarrow (\mathfrak{S},\mathbb{T}) \ stetig \iff \forall i \in I \ f \circ f_i \colon E_i \longrightarrow \mathfrak{S} \ stetig$



Beweis: a): $\Box\Box\Box$

b): Es sei \mathbb{T} eine Topologie auf F: $\forall i \in I \ f_i \colon E_i \longrightarrow (F, \mathbb{T}) \ \mathrm{stetig} \iff \forall i \in I \ \forall O \in \mathbb{T} \ f_i^{-1}(O) \in \mathbb{O}_i \iff \mathbb{T} \subset \mathbb{O}$

c):
$$\Longrightarrow$$
: nach b);
 \Leftarrow : Für $T \in \mathbb{T}$ und $i \in I$ gilt:
 $f_i^{-1}(f^{-1}(T)) = (f \circ f_i)^{-1}(T) \in \mathbb{O}_i$, also $f^{-1}(T) \in \mathbb{O}$