Teil II

Normierte Vektorräume und lineare Abbildungen

15 Definition und Grundeigenschaften

Zur Erinnerung: (man vergleiche Seite 1) Für $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$:

Definition

 $X := (X, \| \|) := (X, a, s, \| \|)$ "Normierter Vektorraum" ("NVR") über \mathbb{K} : \iff (X, a, s) Vektorraum über \mathbb{K} und $\| \|$ "Norm" auf X, d.h.:

- (N0) $\| \ \| : X \ni x \longmapsto \|x\| \in [0, \infty[\ mit]$
- (N1) $||x|| = 0 \implies x = 0$
- (N2) $\|\alpha x\| = |\alpha| \|x\|$
- (N3) $||x+y|| \le ||x|| + ||y||$ (für $x, y \in X, \alpha \in \mathbb{K}$)

Ohne Forderung (N1): "Halbnorm", "Halbnormierter Vektorraum" ("HNVR")

15.1 Bemerkung

Vor.: $(X, \| \|)$ *HNVR* $\ddot{u}ber \mathbb{K}$

Beh.: a) $||x|| - ||y|| | \le ||x \pm y|| \le ||x|| + ||y||$

- b) $\delta(x,y) := ||x-y|| \quad (\dots) \implies (X,\delta) SMR$
- c) $(X, \mathbb{O}(\delta))$ $HdR \iff \delta Metrik \iff \| \| Norm$
- d) Die Abbildungen $a: X \times X \ni (x,y) \longmapsto x+y \in X$ und $s: \mathbb{K} \times X \ni (\alpha,x) \longmapsto \alpha x \in X$ sind stetig.
- e) $\| \cdot \| : X \longrightarrow [0, \infty[\text{ ist gleichmäßig stetig.}]$

Beweis: a), b): (0.0) und (0.1)

- c): $(X, \mathbb{O}(\delta))$ HdR $\iff \delta$ Metrik: nach (1.8). δ Metrik $\iff \| \|$ Norm: \checkmark
- d): $\|(x+y) (a+b)\| = \|(x-a) + (y-b)\| \le \|x-a\| + \|y-b\|$ $\|\lambda x - \alpha a\| = \|(\lambda - \alpha)x + \alpha(x-a)\| \le |\lambda - \alpha| \|x\| + |\alpha| \|x-a\|$ $\le |\lambda - \alpha| (\|a\| + \|x-a\|) + |\alpha| \|x-a\|$

e):
$$\operatorname{nach} a$$

Für einen K-VR X=(X,a,s) und $A,B\subset X,\Lambda\subset \mathbb{K},\alpha\in \mathbb{K},x\in X$:

$$A + B := \{a + b : a \in A, b \in B\}$$

$$A + x := A + \{x\}$$

$$x + A := \{x\} + A$$

$$\Lambda B := \{\lambda b : \lambda \in \Lambda, b \in B\}$$

$$\alpha B := \{\alpha\}B$$

 $A \ "Teilraum" ("Unterraum") : \iff A \neq \emptyset, \ A+A \subset A, \ \mathbb{K}A \subset A$ (A ist dann mit den 'induzierten' Abbildungen a und s wieder \mathbb{K} -VR.)

15.2 Bemerkung

Vor.: (X, a, s, || ||) HNVR, M Teilraum von X

Beh.: a) $(M, a_/, s_/, \| \|_/)$ ist HNVR.

- b) $\mathbb{O}(\| \ \|_{/}) = \mathbb{O}(\| \ \|)_{M}$ (Die induzierte Halbnorm liefert gerade die Spurtopologie.)
- c) \overline{M} ist ein Teilraum von X.

, Immer' M mit $a_{/}$, $s_{/}$ und $\|\ \|_{/}$.

Beweis: a): \checkmark b): \checkmark

c):
$$\overline{M} + \overline{M} = a(\overline{M} \times \overline{M}) = a(\overline{M} \times \overline{M}) \stackrel{a \text{ stetig}}{\subset} \overline{a(M \times M)} \subset \overline{M};$$

$$\mathbb{K} \overline{M} = s(\mathbb{K} \times \overline{M}) = s(\overline{\mathbb{K}} \times \overline{M}) = s(\overline{\mathbb{K}} \times \overline{M}) \stackrel{s \text{ stetig}}{\subset} \overline{s(\mathbb{K} \times M)} \subset \overline{M}$$

15.3 Bemerkung

Vor.: $X = (\dots) HNVR "über" \mathbb{K}$

Beh.: α) Für $a \in X$ ist $T_a : X \ni x \longmapsto x + a \in X$ topologisch.

 β) Für $\mathbb{K} \ni \lambda \neq 0$ ist $M_{\lambda} \colon X \ni x \longmapsto \lambda x \in X$ topologisch.

Beweis: α): T_a bijektiv mit $(T_a)^{-1} = T_{-a}$; T_b stetig für $b \in X$: \checkmark

 β): M_{λ} bijektiv mit $(M_{\lambda})^{-1} = M_{\lambda^{-1}}$; M_{μ} stetig für $\mu \in \mathbb{K}$: \checkmark

Definition

$$X := \begin{pmatrix} X, \parallel \parallel \end{pmatrix} := \begin{pmatrix} X, a, s, \parallel \parallel \end{pmatrix} \quad \text{"(K)-Banach-Raum"} \quad \text{("BR" oder "(B)-Raum")} \\ : \iff (X, a, s, \parallel \parallel) \; NVR \; ""ber \; \mathbb{K} \; und \; \left(X, \parallel \parallel \right) \; vollst"" and is a substitute of the content of t$$

15.4 Bemerkung Auf jedem \mathbb{K} -VR läßt sich eine Norm definieren.

(siehe Übung (7.2))

16 Lineare Abbildungen (,Operatoren')

Es seien $(E_j, || ||_j)$ NVRe über \mathbb{K} (j = 1, 2, 3).

16.1 Bemerkung

Für eine lineare Abbildung $T: E_1 \longrightarrow E_2$ sind äquivalent:

- a) $T \text{ ist } \text{,,beschränkt"} \left(d. \ h.: \exists \alpha \in [0, \infty[\ \forall x \in E_1 \ \|Tx\|_2 \le \alpha \|x\|_1 \right).$
- b) T ist gleichmäßig stetig.
- c) Es existiert ein $a \in E_1$, in dem T stetig ist.
- d) T ist stetig in 0.

Beweis: b) \implies c): trivial

a)
$$\implies$$
 b): $||Tx - Ty||_2 = ||T(x - y)||_2 \le \alpha ||x - y||_1$ (pp)

c)
$$\implies$$
 d): Mit (15.3 a) aus $\left\|Tx-T0\right\|_2 = \left\|T(x+a)-Ta\right\|_2$

d)
$$\Longrightarrow$$
 a): (Zu $\varepsilon = 1$) existiert ein $\delta > 0$ mit $||Tx||_2 \le 1$, falls $||x||_1 \le \delta$. Für $E_1 \ni y \ne 0$ und $x := \frac{\delta}{||y||_1} y$ ist $||x||_1 = \delta$, also $\frac{\delta}{||y||_1} ||Ty||_2 = ||Tx||_1 \le 1$, folglich $||Ty||_2 \le \frac{1}{\delta} ||y||_1$ für $y \in E_1$.

Definition

 $T: E_1 \longrightarrow E_2 \ (NVR-) \ "Isomorphismus": \iff$

T algebraischer Isomorphismus (T bijektiv, linear) und T, T^{-1} stetig

 $T: E_1 \longrightarrow E_2$ "Norm-Isomorphismus": \iff

T algebraischer Isomorphismus und $\|Tx\|_2 = \|x\|_1$ für alle $x \in E_1$

 E_1 und E_2 heißen genau dann "isomorph" bzw. "norm-isomorph", wenn ein Isomorphismus bzw. Norm-Isomorphismus $T \colon E_1 \longrightarrow E_2$ existiert.

16.2 Bemerkung

- a) Für $T: E_1 \longrightarrow E_2$ linear: T Isometrie $\iff \forall x \in E_1 \|Tx\|_2 = \|x\|_1$
- b) Für $T: E_1 \longrightarrow E_2: T$ Norm-Isomorphismus $\Longrightarrow T$ (NVR-) Isomorphismus

Beweis: b): trivial

a):
$$T$$
 Isometrie $\iff \forall u, v \in E_1 \ \delta_2(Tu, Tv) = \delta_1(u, v)$
 $\iff \forall u, v \in E_1 \ \|T(u - v)\|_2 = \|u - v\|_1 \iff \text{r. S.}$

16.3 Folgerung (zur Bemerkung (16.1))

Vor.: $T: E_1 \longrightarrow E_2$ linear

Beh.: T ist genau dann (NVR-) Isomorphismus, wenn T surjektiv ist und $0 < m \le M < \infty$ so existieren, da β

$$m \|x\|_{1} \leq \|Tx\|_{2} \leq M \|x\|_{1}$$

für alle $x \in E_1$ gilt.

Beweis:

- (α) Die Abschätzung impliziert, daß T injektiv ist: T linear und: $Tx = 0 \implies ||Tx||_2 = 0 \implies ||x||_1 = 0 \implies x = 0$
- $(\beta) \quad (\text{nach (16.1):}) \quad T \text{ stetig} \iff \exists \ 0 < M < \infty \ \forall \, x \in E_1 \ \left\| Tx \right\|_2 \leq M \|x\|_1$
- (γ) Für T bijektiv (nach (16.1)): $T^{-1} \text{ stetig} \iff \exists \ 0 < m < \infty \ \forall \ y \in E_2 \ \|T^{-1}y\|_1 \leq \frac{1}{m} \|y\|_2 \\ \iff \exists \ 0 < m < \infty \ \forall \ x \in E_1 \ m \|x\|_1 \leq \|Tx\|_2$

16.4 Folgerung $F\ddot{u}r E := E_1 = E_2$ hat man

- $a)\quad \mathbb{O}(\|\ \|_1)\supset \mathbb{O}(\|\ \|_2)\iff \exists\ \alpha\in \]0,\infty[\ \forall\,x\in E\ \|x\|_2\leq \alpha\,\|x\|_1$
- $\begin{array}{ll} b) & \mathbb{O}(\parallel \ \parallel_1) \ = \ \mathbb{O}(\parallel \ \parallel_2) \\ & \iff \exists \ 0 < m \leq M < \infty \ \forall \, x \in E \ m{\parallel}x{\parallel}_1 \leq {\parallel}x{\parallel}_2 \leq M{\parallel}x{\parallel}_1 \\ & \iff : \ \parallel \ \parallel_1 \ und \ \parallel \ \parallel_2 \ sind \ "\"aquivalent". \end{array}$

Beweis: b): nach a)

a):
$$\ell$$
. S. $\stackrel{(4.10)}{\Longleftrightarrow}$ id: $(E, \| \|_1) \longrightarrow (E, \| \|_2)$ stetig $\stackrel{(16.1)}{\Longleftrightarrow}$ r. S.

Für eine lineare Abbildung $T: E_1 \longrightarrow E_2$ betrachten wir — mit $\infty \cdot 0 := 0$ — die "Abbildungsnorm" oder "Operatornorm" von T:

Definition

$$\left\|T\right\| \;:=\; \inf\left\{\alpha\in[0,\infty]:\forall\,x\in E_1\,\left\|Tx\right\|_2\;\leq\; \alpha\left\|x\right\|_1\right\}$$

Mit $\sup \emptyset := 0$ gilt:

16.5 Bemerkung

$$||T|| = \min \left\{ \alpha \in [0, \infty] : \forall x \in E_1 \ ||Tx||_2 \le \alpha ||x||_1 \right\}$$

$$= \sup \left\{ \frac{||Tx||_2}{||x||_1} : x \in E_1 \setminus \{0\} \right\}$$

$$= \sup \left\{ ||Tx||_2 : x \in E_1 \wedge ||x||_1 \le 1 \right\}$$

$$= \sup \left\{ ||Tx||_2 : x \in E_1 \wedge ||x||_1 = 1 \right\}$$

$$= \sup \left\{ ||Tx||_2 : x \in E_1 \wedge ||x||_1 < 1 \right\}$$

Beweis: 1. Gleichung: $\mathbb{E} \|T\| < \infty$: Für $x \in E_1$ und $n \in \mathbb{N}$

$$||Tx||_{2} \le (||T|| + \frac{1}{n})||x||_{1};$$

daraus (x fest):
$$||Tx||_2 \le ||T|| ||x||_1$$

Für
$$\alpha \in [0, \infty]$$
: $\forall x \in E_1$ $\|Tx\|_2 \leq \alpha \|x\|_1$
 $\iff \forall x \in E_1 \setminus \{0\}$ $\frac{\|Tx\|_2}{\|x\|_1} \leq \alpha$
 $\iff S_1 := \sup \left\{ \frac{\|Tx\|_2}{\|x\|_1} : E_1 \ni x \neq 0 \right\} \leq \alpha;$

somit $S_1 = ||T||$.

Die anderen Suprema seien (von oben nach unten) mit S_2, S_3, S_4 bezeichnet.

$$S_3 \stackrel{\checkmark}{\leq} S_2 \stackrel{\alpha)}{\leq} S_1 \stackrel{\beta)}{\leq} S_3$$
, also: $S_1 = S_2 = S_3$; $S_4 \leq S_2$: \checkmark

$$\alpha){:}\quad \text{Für } 0<\left\|x\right\|_{1}\leq 1{:}\quad \left\|Tx\right\|_{2}\leq \frac{\left\|Tx\right\|_{2}}{\left\|x\right\|_{1}}$$

$$\beta$$
): Für $E_1 \ni x \neq 0$: $\frac{\|Tx\|_2}{\|x\|_1} = \|T(\frac{1}{\|x\|_1}x)\|_2$

$$S_3 \leq S_4$$
: Ist $x \in E_1$ mit $||x||_1 = 1$, dann ist für $0 \leq \alpha < 1$ $||\alpha x||_1 = \alpha < 1$, also $\alpha ||Tx||_2 = ||T(\alpha x)||_2 \leq S_4$, daher $\alpha S_3 \leq S_4$ (\Longrightarrow Behauptung)

Bezeichnung

$$\mathcal{L}(E_1, E_2) := \{A \mid A \colon E_1 \longrightarrow E_2 \mid (\mathbb{K}-) linear\}$$

Mit punktweiser Addition und Skalarmultiplikation ist $\mathcal{L}(E_1, E_2)$ ein \mathbb{K} -VR.

$$L(E_1, E_2) := \{ A \in \mathcal{L}(E_1, E_2) : A \text{ stetig} \} \stackrel{(16.1)}{=} \{ A \in \mathcal{L}(E_1, E_2) : ||A|| < \infty \}$$

Beispiel
$$E_1 := C_1^{\mathbb{R}}[0,1] \quad \big(:= \big\{ f \mid f \colon [0,1] \longrightarrow \mathbb{R} \text{ stetig dfb} \big\} \big)$$

 $E_2 := C^{\mathbb{R}}[0,1] \quad \big(:= \big\{ f \mid f \colon [0,1] \longrightarrow \mathbb{R} \text{ stetig} \big\} \big);$

beide versehen mit $\| \cdot \|_{\infty}$.

Für $f \in E_1$ sei Df := f', dann ist $D \colon E_1 \longrightarrow E_2$ linear (\checkmark) mit $||D|| = \infty : \square \square$

16.6 Satz

- a) $(L(E_1, E_2), || ||)$ ist ein NVR.
- b) Ist $(E_2, \| \|_2)$ ein BR, so ist auch $(L(E_1, E_2), \| \|)$ ein BR.

Wir betrachten stets' $L(E_1, E_1)$ mit der Operatornorm.

Beweis:

a): Es seien $S, T \in L(E_1, E_2)$ und $\alpha \in \mathbb{K}$: Für $x \in E_1$ gilt dann:

$$\begin{split} \left\| (\alpha S + T)x \right\|_2 &= \left\| \alpha Sx + Tx \right\|_2 \leq \left| \alpha \right| \left\| Sx \right\|_2 + \left\| Tx \right\|_2 \\ &\leq \left(\left| \alpha \right| \left\| S \right\| + \left\| T \right\| \right) \left\| x \right\|_1, \end{split}$$
 also
$$\left\| \alpha S + T \right\| \leq \left| \alpha \right| \left\| S \right\| + \left\| T \right\|;$$
 speziell
$$\left\| S + T \right\| \leq \left\| S \right\| + \left\| T \right\| \\ \text{und} \qquad \left\| \alpha S \right\| \leq \left| \alpha \right| \left\| S \right\| \quad (*) \end{split}$$

Für
$$\alpha \neq 0$$
:
$$||S|| = ||\alpha^{-1}(\alpha S)|| \stackrel{(*)}{\leq} \frac{1}{|\alpha|} ||\alpha S||;$$

$$||\alpha S|| = |\alpha| ||S||.$$

$$||T|| = 0 \implies \forall x \in E_1 \quad ||Tx||_2 = 0 \implies \forall x \in E_1 \quad Tx = 0, \text{ d. h. } T = 0$$

b): Statt einer (teilweisen) — und vielleicht doch etwas künstlichen — Zurückführung auf (8.4 b) geben wir (noch einmal) einen ausführlichen Beweis:

Ist (A_n) eine CF in $L(E_1, E_2)$, dann ist für jedes $x \in E_1$ die Folge $(A_n x)$ eine CF in E_2 (da $||A_n x - A_m x||_2 \le ||A_n - A_m|| ||x||_1$) mit eindeutigem Grenzwert $y_x \in E_2$. Wir setzen $Ax := y_x$. Für $x, y \in E_1$ und $\alpha \in \mathbb{K}$ hat man

$$A(\alpha x + y) \longleftarrow A_n(\alpha x + y) = \alpha A_n x + A_n y \longrightarrow \alpha A x + A y$$

also $A \in \mathcal{L}(E_1, E_2)$.

Zu $\varepsilon > 0$ existiert ein $N \in \mathbb{N}$ mit $||A_n - A_m|| \le \varepsilon$ für $n, m \ge N$; es seien $n \ge N$ fest und $m \ge n$ beliebig; für $x \in E_1$ mit $||x||_1 \le 1$ gilt dann:

$$||A_{n}x - Ax||_{2} \le ||A_{n}x - A_{m}x||_{2} + ||A_{m}x - Ax||_{2}$$

 $\le ||A_{n} - A_{m}|| + ||A_{m}x - Ax||_{2}$
 $\le \varepsilon + ||A_{m}x - Ax||_{2}$

 $m \longrightarrow \infty$ zeigt: $\|A_n x - Ax\|_2 \le \varepsilon$, also $\|A_n - A\| \le \varepsilon$; aus $A_n - A \in L(E_1, E_2)$ folgt aber insbesondere $A \in L(E_1, E_2)$.

Bezeichnung Ist (E, || ||) ein NVR über \mathbb{K} , dann sei:

 $E^* := \mathcal{L}(E, \mathbb{K})$ der "algebraische Dualraum" zu E

 $E' := L(E, \mathbb{K})$ der (,topologische' oder ,stetige') "Dualraum" zu E

Elemente aus E^* heißen "lineare Funktionale" oder "Linearformen" (auf E).

Elemente aus E': "stetige lineare Funktionale" oder "stetige Linearformen" (auf E)

16.7 Folgerung
$$(E, || ||)$$
 $NVR \implies E'$ BR

16.8 Bemerkung

Vor.: $T \in L(E_1, E_2) \land S \in L(E_2, E_3)$

Beh.: $S \circ T =: ST \in L(E_1, E_3)$ und ||ST|| < ||S|| ||T||

Beweis: Für $x \in E_1$: $\|STx\|_3 \le \|S\| \|Tx\|_2 \le \|S\| \|T\| \|x\|_1$, also $\|ST\| \le \|S\| \|T\|$ (und somit $ST \in L(E_1, E_3)$)

Beispiel

$$E_j := \mathbb{R}^2 \pmod{(\mathbf{z}. \mathbf{B}.)} \parallel_{\infty} (j = 1, 2, 3)$$

 $S \longleftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad T \longleftrightarrow \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \text{ dann } ST = 0 \text{ und (man vergleiche Seite 29)}$
 $\|S\| = 1 = \|T\|, \text{ also } \|ST\| = 0 < 1 = \|S\| \|T\|$

Definition

$$A := (A, \| \|) := (A, a, s, m, e, \| \|) \quad \text{"normierte } \mathbb{K}\text{-Algebra mit Eins"} : \iff (A, a, s, \| \|) \ NVR \ ""ber \mathbb{K} \ und \ m : A \times A \ni (a, b) \longmapsto ab \in A \ assoziativ,$$

$$e \in A \ mit \ ex = xe = x, \ (x + y)z = xz + yz, \ z(x + y) = zx + zy,$$

$$\alpha(xy) = (\alpha x)y = x(\alpha y), \ \|xy\| \le \|x\| \ \|y\| \ (\dots)^*$$

Definition

A := (A, a, s, m, e, || ||) "BANACH-Algebra" (über \mathbb{K} , mit Eins e) ("(B)-Algebra") : \iff A normierte \mathbb{K} -Algebra mit Eins e und (A, || ||) vollständig

16.9 Satz

Vor.:
$$(E, a, s, || ||)$$
 NVR $\ddot{u}ber \mathbb{K}$

Beh.: a) $(L(E, E), a, s, \circ, id_E, || ||)$ ist eine normierte \mathbb{K} -Algebra mit Eins id_E (und $|| id_E || = 1$).

b) $E BR \implies (L(E, E), a, s, \circ, id_E, || ||)$ ist eine (B)-Algebra.

Beweis: a): mit
$$(16.6.a)$$
 und (16.8) b): mit a) und $(16.6.b)$

16.10 Bemerkung

Ist A = (A, a, s, m, e, || ||) eine normierte \mathbb{K} -Algebra (mit Eins), dann ist $m: A \times A \longrightarrow A$ stetig.

Beweis:

$$\|xy-cd\| = \|x(y-d)+(x-c)d\| \le \|x\|\|y-d\|+\|x-c\|\|d\| \longrightarrow 0$$
 für $x \longrightarrow c$ und $y \longrightarrow d$

17 Reihen in normierten Vektorräumen

Es sei E := (E, || ||) := (E, a, s, || ||) ein NVR über \mathbb{K} .

FF: Für die folgenden Überlegungen genügt eine abelsche topologische Gruppe (E, a, \mathbb{O}) .

Definition**

Zu $k \in \mathbb{Z}$ und $\alpha \colon \mathbb{N}_k \longrightarrow E$ betrachten wir die "Folge der Partialsummen"

^{*} Wir fordern nicht ||e|| = 1!

 $\sum \alpha \colon \mathbb{N}_k \longrightarrow E$, definiert durch

$$\left(\sum \alpha\right)(k) := \sum_{\kappa=k}^k \alpha(\kappa) := \alpha(k)$$

$$und \ f\ddot{u}r \ \mathbb{N}_k \ni n \quad \left(\sum \alpha\right)(n+1) := \sum_{\nu=k}^{n+1} \alpha(\nu) := \left(\sum_{\nu=k}^n \alpha(\nu)\right) + \alpha(n+1).$$

Meist benutzte Sprech- und Schreibweisen:

$$F\ddot{u}r \ a \in E: \qquad \sum_{\nu=k}^{\infty} \alpha(\nu) = a: \iff \sum_{\nu=k}^{n} \alpha(\nu) \longrightarrow a \quad (\mathbb{N}_k \ni n \longrightarrow \infty)$$

"Die 'Reihe'
$$\sum_{\nu=k}^{\infty} \alpha(\nu)$$
 ist konvergent": $\iff \sum \alpha$ ist konvergent

"Die 'Reihe'
$$\sum_{\nu=k}^{\infty}\alpha(\nu)$$
 ist absolut konvergent": $\iff \sum_{\nu=k}^{\infty}\|\alpha(\nu)\|$ konvergent; usw.

17.1 Satz

Vor.:
$$E BR; k \in \mathbb{Z}, \alpha : \mathbb{N}_k \longrightarrow E, \sum_{\nu=k}^{\infty} \alpha(\nu) \text{ absolut konvergent}$$

Vor.:
$$E \ BR; \ k \in \mathbb{Z}, \ \alpha \colon \mathbb{N}_k \longrightarrow E, \ \sum_{\nu=k} \alpha(\nu) \ absolut \ konvergent$$

$$Beh.: \ a) \ \sum_{\nu=k}^{\infty} \alpha(\nu) \ ist \ konvergent \ und \ \left\| \sum_{\nu=k}^{\infty} \alpha(\nu) \ \right\| \le \sum_{\nu=k}^{\infty} \|\alpha(\nu)\|.$$

$$b) \ F\ddot{u}r \ \sigma \colon \mathbb{N}_k \longrightarrow \mathbb{N}_k \ bijektiv \ ist$$

$$\sum_{\nu=k}^{\infty} (absolut) \ konvergent$$

$$\sum_{\nu=k}^{\infty} \alpha(\sigma(\nu)) \quad \begin{cases} (absolut) \ konvergent \\ = \sum_{\nu=k}^{\infty} \alpha(\nu) \end{cases}.$$

Beweis: $s := \sum \alpha$

Für $n \in \mathbb{N}_k$ und $p \in \mathbb{N}$

$$||s(n+p)-s(n)|| = \left\| \sum_{\nu=n+1}^{n+p} \alpha(\nu) \right\| \le \sum_{\nu=n+1}^{n+p} ||\alpha(\nu)|| \longrightarrow 0 \quad (n \longrightarrow \infty);$$

daher ist s eine CF; somit existiert eindeutig ein $c \in E$ mit $s(n) \longrightarrow c = \sum_{i=1}^{\infty} \alpha(\nu)$ für $n \longrightarrow \infty$; dann gilt

$$\|c\| \longleftarrow \|s(n)\| \le \sum_{\nu=k}^n \|\alpha(\nu)\| \le \sum_{\nu=k}^\infty \|\alpha(\nu)\|, \text{ also } \|c\| \le \sum_{\nu=k}^\infty \|\alpha(\nu)\|.$$

^{**} Ich erinnere noch einmal an die Bezeichnung $\mathbb{N}_k := \{k, k+1, k+2, \dots\}$.

b): 1. Für
$$n \in \mathbb{N}_k$$
 gilt $\sum_{\nu=k}^n \|\alpha(\sigma(\nu))\| \le \sum_{j=k}^\infty \|\alpha(j)\| < \infty$;

dies zeigt: $\sum_{\nu=k}^{\infty} \alpha(\sigma(\nu))$ ist absolut konvergent.

2. $t := \sum (\alpha \circ \sigma)$: Zu $\varepsilon > 0$ existiert ein $N \in \mathbb{N}_k$ mit

$$\sum_{j=N+1}^{\infty} \|\alpha(j)\| \le \varepsilon;$$

dazu existiert — da σ surjektiv ist — ein $M \in \mathbb{N}_k$ mit $\{k, \ldots, N\} \subset \{\sigma(k), \ldots, \sigma(M)\}$; offenbar gilt $M \geq N$. Für $\mathbb{N}_k \ni n > M$ folgt so

$$\|t(n) - s(n)\| = \left\| \sum_{j=k}^{n} \alpha(\sigma(j)) - \sum_{\nu=k}^{n} \alpha(\nu) \right\| \le \sum_{\nu=N+1}^{\infty} \|\alpha(\nu)\| \le \varepsilon,$$
 also $t(n) \longrightarrow c$.

In einem BR folgt nach dem vorangehenden Satz aus der absoluten Konvergenz einer Reihe ihre Konvergenz. Diese Eigenschaft ist für die Vollständigkeit charakteristisch:

17.2 Satz

Vor.:
$$\forall \alpha \in E^{\mathbb{N}}$$
: $\sum_{\nu=1}^{\infty} \alpha(\nu)$ absolut konvergent $\Longrightarrow \sum_{\nu=1}^{\infty} \alpha(\nu)$ konvergent Beh.: E ist ein BR.

Beweis: Ist $(a_n) \in E^{\mathbb{N}}$ eine CF, dann existieren — nach Übung (5.2.b) — Indizes $n_1 < n_2 < n_3 < \dots$ derart, daß $\sum_{j=1}^{\infty} \|a_{n_{j+1}} - a_{n_j}\| < \infty$; nach Voraussetzung existiert ein $c \in E$ mit $\sum_{j=1}^{k-1} (a_{n_{j+1}} - a_{n_j}) \longrightarrow c$ für $k \longrightarrow \infty$; ℓ . $S = a_{n_k} - a_{n_1}$, also $a_{n_k} \longrightarrow c + a_{n_1} =: b$. Nach Übung (5.2.a) folgt dann: $a_n \longrightarrow b$ $(n \longrightarrow \infty)$

"NEUMANN-Reihe"

Es sei A = (A, a, s, m, e, || ||) eine (B)-Algebra (über K, mit Eins e)*

Bezeichnung

Für
$$x \in A$$
: $x^0 := e$, $x^{n+1} := x^n \cdot x$ $(n \in \mathbb{N}_0)$

^{*} Für die folgenden Überlegungen genügt die Ringstruktur.

 $x \text{ "Einheit"} : \iff \exists y \in A \quad xy = e = yx \quad (\iff \dot{\exists} \dots);$ $\Im(A) := \left\{ x \in A : x \text{ Einheit} \right\}$

 $(\mathfrak{I}(A), m, e)$ ist eine Gruppe. ("Einheiten-Gruppe") 17.3 Trivialität

17.4Satz

Vor.:
$$x \in A$$
 mit $\sum_{n=0}^{\infty} x^n$ konvergent

Beh.: $e - x \in \Im(A) \land (e - x)^{-1} = \sum_{n=0}^{\infty} x^n$

Anmerkung Die Voraussetzung in (17.4) ist — nach (17.1) — gegeben, falls $\sum_{n=0}^{\infty} \|x^n\| < \infty, \text{ insbesondere also, falls } \|x\| < 1. \quad \text{(Beachten: } \|x^n\| \le \|x\|^n \quad (n \in \mathbb{N})\text{)}$

Beweis (zu (17.4)): Mit
$$s := \sum_{n=0}^{\infty} x^n$$

$$(e-x)\sum_{j=0}^{n}x^{j} \stackrel{\checkmark}{=} \left(\sum_{j=0}^{n}x^{j}\right)(e-x) = e-x^{n+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(e-x)s \qquad \qquad s(e-x) \qquad \qquad e$$

17.5 Folgerung

a) Die Abbildung
$$\Im(A) \ni x \longmapsto x^{-1} \in \Im(A)$$
 ist stetig.
b) $\Im(A)$ ist offen (in A).

Beweis:

 α): Falls $x \in A$ mit ||x|| < 1 $(e - x \in \mathfrak{I}(A) \text{ und:})$

$$\left\| (e-x)^{-1} - \sum_{j=0}^{n} x^{j} \right\| \le \frac{\|x\|^{n+1}}{1 - \|x\|} \quad (n \in \mathbb{N}_{0});$$

denn

$$\ell. S. \stackrel{(17.4)}{=} \left\| \sum_{j=n+1}^{\infty} x^j \right\| \le \sum_{j=n+1}^{\infty} \|x\|^j = r. S.$$

 $\beta)\colon \ \ \mathrm{F\"{u}r}\ x\in \Im(A),\ \alpha\in \]0,1[\quad \mathrm{und}\ \ h\in A\ \mathrm{mit}\ \|h\|\leq \alpha\, \|x^{-1}\|^{-1}\ \mathrm{ist}\ x+h\in \Im(A)\ \mathrm{und}$

$$\|(x+h)^{-1} - x^{-1} + x^{-1}hx^{-1}\| \le \frac{1}{1-\alpha} \|x^{-1}\|^3 \|h\|^2$$