Zunächst ist $\varkappa x \colon E' \longrightarrow \mathbb{K}$ linear. $|(\varkappa x)x'| = |x'x| \le ||x'|| ||x||$ zeigt $||\varkappa x|| \le ||x||$. Mit (20.5 b) dann $||\varkappa x|| = ||x||$. Damit (\checkmark):

21.1 Bemerkung

```
\varkappa \colon E \longrightarrow E'' \text{ ist linear mit } \|\varkappa x\| = \|x\| \text{ f\"{u}r } x \in E \,. Somit ist \varkappa \colon E \longrightarrow \varkappa(E) ein Norm-Isomorphismus.
```

Bezeichnung \varkappa heißt "kanonische Einbettung" (von E in E").

Nach (8.7) läßt sich jeder MR — insbesondere also jeder NVR — "vervollständigen". Für einen NVR möchte man natürlich auf der "Vervollständigung" auch wieder eine *Vektorraumstruktur* und eine *Norm* derart haben, so daß die Vervollständigung NVR — also BR — wird (und die Norm die gegebene Metrik liefert). Dies läßt sich — ausgehend von (8.7) — kanonisch ohne Schwierigkeiten machen. Ganz einfach — aber unter Benutzung des (nicht-trivialen) "Geschützes" "Hahn-Banach" — geht das wie folgt:

21.2 Bemerkung $\overline{\varkappa E}$ ist ein BR. (eine Vervollständigung von E) (Abschluß in E'')

Beweis: Nach (15.2.c) ist $\overline{\varkappa E}$ ein UR von E''; dieser ist vollständig, da ja der Raum E'' (als Dualraum) vollständig ist.

Bezeichnung E "reflexiv": $\iff \varkappa E = E''$

Anmerkung: Die Existenz eines (beliebigen) Norm-Isomorphismus $\tau \colon E \longrightarrow E''$ ist *nicht* hinreichend für die Reflexivität von $E \colon R. C.$ JAMES; z.B. in DAY p 72

21.3 Bemerkung Ist E endlich-dimensional, dann ist E reflexiv.

Beweis: Ist dim $E =: n \in \mathbb{N}_0$, dann gilt nach (18.3) $E' = E^*$, also (Lineare Algebra) dim E' = n; somit gilt auch dim E'' = n (und dim $\varkappa E = n$): Zusammen hat man: $\varkappa E = E''$.

22 Uniform boundedness principle, Satz von Banach-Steinhaus

Wie üblich sei wieder $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

22.1 Satz (von der gleichmäßigen Beschränktheit; Uniform boundedness principle – UBP)

```
\begin{array}{lll} \textit{Vor.:} & \textit{I nicht-leere Menge, } \left(E, \parallel \parallel\right) \; \mathbb{K}\text{-}\textit{BR, } \left(E_i, \parallel \parallel_i\right) \; \mathbb{K}\text{-}\textit{NVR,} \\ & T_i \in L(E, E_i) \quad (i \in I), \\ & \forall \, x \in E \; \left\{ \left\|T_i \, x\right\|_i : i \in I \right\} \; \textit{beschr\"{a}nkt} \\ \\ \textit{Beh.:} & \left\{ \left\|T_i\right\| : i \in I \right\} \; \textit{ist beschr\"{a}nkt.} \end{array}
```

Anmerkung: Die Vollständigkeit von (E, || ||) ist wesentlich, wie Übung 10.1 zeigt.

Beweis: Für $i \in I$ sei $f_i : E \ni x \longmapsto \|T_i x\|_i \in [0, \infty[$ (stetig, da T_i und $\| \cdot \|_i$ stetig). Nach (10.3) und (10.5) existieren $a \in E$ und $\varepsilon, M \in]0, \infty[$ derart, daß

$$\forall i \in I \quad \forall x \in U_a^{\varepsilon} \quad \|T_i x\|_i = f_i(x) \leq M.$$

Ist $y \in E$ mit ||y|| < 1, dann gilt $a + \varepsilon y \in U_a^{\varepsilon}$, also für $i \in I$: $\varepsilon ||T_i y||_i = ||T_i(a + \varepsilon y) - T_i a||_i \le ||T_i(a + \varepsilon y)||_i + ||T_i a||_i \le 2M;$ somit $||T_i|| \le \frac{2M}{\varepsilon} (i \in I)$.

22.2 Folgerung

Vor.: I nicht-leere Menge, (E, || ||) \mathbb{K} -BR, $x_i' \in E'$ $(i \in I)$ so, $da\beta$ $\{|x_i'x| : i \in I\}$ für alle $x \in E$ beschränkt ist. Beh.: $\{||x_i'|| : i \in I\}$ ist beschränkt.

Beweis: ✓

22.3 Folgerung

Vor.: I nicht-leere Menge, (E, || ||) \mathbb{K} -NVR, $x_i \in E$ $(i \in I)$ so, daß $\{|x'x_i|: i \in I\}$ für alle $x' \in E'$ beschränkt ist.

Beh.: $\{||x_i||: i \in I\}$ ist beschränkt.

Beweis: (22.2) anwenden auf E' und $\varkappa x_i \in E''$ $(i \in I)$ ((21.1) beachten!)

22.4 Satz (Banach-Steinhaus)

Vor.:
$$(E_{\nu}, \| \|_{\nu})$$
 \mathbb{K} -BR $(\nu = 1, 2)$; $T_n \in L(E_1, E_2)$ $(n \in \mathbb{N})$; $M \subset E_1$ so, $da\beta \langle M \rangle$ dicht in E_1 ist.

Beh.: $\bigcirc \forall x \in E_1 \ (T_n x)$ konvergent $\bigcirc \bigcirc \{ \|T_n\| : n \in \mathbb{N} \}$ beschränkt $\wedge \forall u \in M \ (T_n u)$ konvergent

22.5 Zusatz Falls ① und $Tx := \lim_{n \to \infty} T_n x \ (x \in E_1) : T \in L(E_1, E_2)$

Beweis:

① \Longrightarrow ②: $\{||T_n|| : n \in \mathbb{N}\}$ ist nach (22.1) beschränkt.

 $\textcircled{2} \Longrightarrow \textcircled{0} \text{:} \quad \forall \, u \in M \, (T_n u) \text{ konvergent } \Longrightarrow \forall \, z \in \langle M \rangle \, \left(T_n z \right) \text{ konvergent; es sei} \\ K \in \]0, \infty [\text{ so, daß } \|T_n\| \leq K \, (n \in \mathbb{N}). \ \text{Zu } x \in E_1 \text{ und } \varepsilon > 0 \text{ existiert ein} \\ z \in \langle M \rangle \text{ mit } \|z - x\|_1 < \frac{\varepsilon}{4K}, \text{ weiter existiert } N \in \mathbb{N} \text{ mit } \|T_m z - T_n z\|_2 < \frac{\varepsilon}{2} \\ \text{für } n, m > N \text{:}$

$$\begin{split} \left\| T_{n} \, x - T_{m} \, x \right\|_{2} & \leq \left\| T_{n} \, x - T_{n} \, z \right\|_{2} + \left\| T_{n} \, z - T_{m} \, z \right\|_{2} + \left\| T_{m} \, z - T_{m} \, x \right\|_{2} \\ & \leq \left\| T_{n} \right\| \left\| x - z \right\|_{1} + & \text{if } + \left\| T_{m} \right\| \left\| x - z \right\|_{1} \\ & \leq \left\| K \cdot \left\| x - z \right\|_{1} + & \text{if } + \left\| K \cdot \left\| x - z \right\|_{1} < \varepsilon \right. \end{split}$$

also ist $(T_n x)$ eine CF und damit konvergent.

Beweis des Zusatzes: $T \in \mathcal{L}(E_1, E_2)$: \checkmark

Für $x \in E_1$ (und K wie oben):

$$||Tx||_{2} \leftarrow ||T_{n} x||_{2} \leq ||T_{n}|| ||x||_{1} \leq K ||x||_{1},$$

also ||T|| < K.

Neben dem im Folgenden dargestellten Anwendungsbeispiel hat (22.4) viele weitere wichtige Anwendungen: z.B. Fourier-Entwicklung (man vergleiche dazu etwa Wloka, Seite 124f) und (schwach-) holomorphe BR-wertige Funktionen.

Anwendungsbeispiel: ("Quadraturformeln"; Numerische Integration)

Es seien $-\infty < a < b < \infty$ und $f: [a, b] \longrightarrow \mathbb{R}$ stetig.

Gesucht: $\int_{a}^{b} f(x) dx$

Das 'Standard-Verfahren' $\int\limits_a^b f(x)\,dx=F(b)-F(a)$ für eine Stammfunktion F von f ist recht häufig nicht (numerisch) brauchbar oder nicht angemessen; sei es, weil die explizite 'Berechnung' von F nicht gelingt, sei es, weil F sich nicht als elementare und nicht im benötigten Umfang 'tabellierte' Funktion herausstellt, sei es aber auch, weil die Bestimmung und Auswertung von F einen solchen Aufwand verursacht, daß man nach bequemeren Verfahren suchen wird. Dieser letzte Fall tritt häufig bereits bei der Integration rationaler Funktionen auf. Aufgrund der Charakterisierung des RIEMANN-Integrals läßt sich $i(f):=\int\limits_a^b f(x)\,dx$ beliebig genau durch eine endliche Linearkombination von Funktionswerten

$$\sum_{\kappa=0}^{k} \lambda_{\kappa} f(x_{\kappa})$$

(mit $x_{\kappa} \in [a, b]$) approximieren. In der numerischen Mathematik werden Näherungsformeln dieser Art hergeleitet und ihre Eigenschaften untersucht. Die Verwendung solcher Formeln ist auch noch sinnvoll, wenn die Funktion nur an bestimmten Stellen x_k — etwa aufgrund von Messungen oder als numerische Lösung einer Differentialgleichung — bekannt ist.

Bezeichnung Es seien $n \in \mathbb{N}_0$, $x_{\nu} \in [a, b]$ paarweise verschieden und $\lambda_{\nu} \in \mathbb{R}$ für $\nu = 0, \ldots, n$. Dann heißt das durch

$$q(f) := \sum_{\nu=0}^{n} \lambda_{\nu} f(x_{\nu}) \qquad (f \in C^{\mathbb{R}}[a, b])$$

definierte Funktional q "Quadraturformel" ("n-ter Ordnung") mit den "Stützstellen" x_{ν} und den "Gewichten" λ_{ν} . Eine Folge (q_k) von Quadraturformeln heißt "Quadraturverfahren", wenn die Folge der zugehörigen Ordnungen isoton ist.

22.6 Satz (Szegö)

Vor.: Es seien (q_k) ein Quadraturverfahren und dazu $\lambda_0^{(k)}, \ldots, \lambda_{n_k}^{(k)}$ die Gewichte von q_k für $k \in \mathbb{N}$.

Beh.:
$$\oint f \in C^{\mathbb{R}}[a,b] \quad q_k(f) \longrightarrow i(f) \quad (k \longrightarrow \infty)$$

$$\begin{cases}
\forall m \in \mathbb{N}_0 \quad q_k(\mathbf{x}^m) \longrightarrow i(\mathbf{x}^m) \quad (k \longrightarrow \infty) \\
\land \sup_{k \in \mathbb{N}} \sum_{\nu=0}^{n_k} |\lambda_{\nu}^{(k)}| < \infty
\end{cases}$$

Beweis: Nach dem Satz von WEIERSTRASS (Übung (5.1.c)) erfüllt $M := \{ \mathbf{x}^m : m \in \mathbb{N}_0 \}$ die Voraussetzung von (22.4) (mit $E_1 := (C^{\mathbb{R}}[a, b], |||_{\infty})$. Nach (22.4) genügt daher zu zeigen:

$$||q|| = \sum_{\nu=0}^{n} |\lambda_{\nu}|$$
 für eine Quadraturformel $q(f) := \sum_{\nu=0}^{n} \lambda_{\nu} f(x_{\nu})$ (...).
 $\leq : \checkmark$

22.7 Folgerung (Steklov)

Sind in (22.6) alle Gewichte
$$\lambda_j^{(k)}$$
 nicht-negativ, dann gilt:
$$\downarrow^{\forall f \in C^{\mathbb{R}}[a,b]} q_k(f) \longrightarrow i(f) \quad (k \longrightarrow \infty)$$

$$\forall m \in \mathbb{N}_0 \quad q_k(\mathbf{x}^m) \longrightarrow i(\mathbf{x}^m) \quad (k \longrightarrow \infty)$$

Beweis:

$$\sum_{j=0}^{n_k} |\lambda_j^{(k)}| = \sum_{j=0}^{n_k} \lambda_j^{(k)} = q_k(\mathbf{x}^0) \longrightarrow i(\mathbf{x}^0) = b - a \quad (k \longrightarrow \infty)$$

Anmerkungen:

① Ist q eine Quadraturformel (von o. a. Typ) mit $q(\mathbf{x}^0) = i(\mathbf{x}^0)$, dann gilt $||i-q|| \geq b-a$. Eine gleichmäßige Approximation durch solche Quadraturformeln ist also nicht möglich.

Beweis: Zu jedem
$$\varepsilon > 0$$
 existiert ein $g \in C^{\mathbb{R}}[a,b]$ mit $g(x_{\nu}) = \operatorname{sign} \lambda_{\nu}, \|g\| \leq 1$ und $|i(g)| \leq \varepsilon$ (\checkmark):

- ② Durch die Forderung q(P) = i(P) für alle Polynome P mit Grad $\leq n$ wird bei vorgegebenen Stützstellen eindeutig eine Quadraturformel (von o. a. Typ) n-ter Ordnung bestimmt. (\rightsquigarrow "interpolatorische" Quadraturformel) [z. B. mit LAGRANGE-Darstellung von P]
- ③ Für Newton-Cotes-Formeln (in ② äquidistante Stützstellen) ist (22.5) nicht anwendbar (Gegenbeispiel von Polya). Für Gauss-Formeln sind Gewichte nichtnegativ (also (22.6) anwendbar).

23 Open mapping principle; closed graph theorem

23.1 Satz von der offenen Abbildung; open mapping principle

Vor.:
$$(E_{\nu}, \| \|_{\nu}) \mathbb{K}$$
-BR $(\nu = 1, 2)$, $A \in L(E_1, E_2)$ mit $AE_1 = E_2$
Beh.: A ist offen.

Beweis: Wir zeigen zunächst:

a): Es existiert ein $\varepsilon > 0$ mit $\{y \in E_2 : \|y\|_2 < \varepsilon\} \subset \{Ax : x \in E_1 \land \|x\|_1 < 1\} :$ $S_n := \{x \in E_1 : \|x\|_1 < 2^{-n}\} \qquad (n \in \mathbb{N}_0)$

Aus $AE_1 = E_2$ und $E_1 = \bigcup_{k=1}^{\infty} kS_1$ folgt $E_2 = \bigcup_{k=1}^{\infty} kAS_1$. E_2 ist von 2. Kategorie (nach (10.4)), daher existiert ein $k \in \mathbb{N}$ mit $k \in \mathbb{N}$ mit

 $\left\{z \in E_2 : \left\|z\right\|_2 < \eta\right\} \subset \overline{AS_1} - p \subset \overline{AS_1} - \overline{AS_1} \overset{(-\text{ stetig})}{\subset} \overline{AS_1 - A.S_1} \subset \overline{AS_0} \,.$ Daher — wieder mit $(15.3.\beta)$ —

(1)
$$\left\{v \in E_2 : \left\|v\right\|_2 < \eta \cdot 2^{-n}\right\} \subset \overline{AS_n} \qquad \left(n \in \mathbb{N}_0\right)$$

Behauptung: $\varepsilon := \eta/2$ tut's: Zu $y \in E_2$ mit $\|y\|_2 < \eta/2$ existiert nach (1) ein $x_1 \in S_1$ mit $\|y - Ax_1\|_2 < \eta 2^{-2}$, dazu existiert dann (wieder nach (1)) ein $x_2 \in S_2$ so, daß $\|(y - Ax_1) - Ax_2\|_2 < \eta 2^{-3}$ und (induktiv) für $n \in \mathbb{N}$: $x_n \in S_n$ derart, daß

(2)
$$\left\| y - \sum_{\nu=1}^{n} A x_{\nu} \right\|_{2} < \eta 2^{-(n+1)}$$

Da $||x_{\nu}||_{1} < 2^{-\nu}$ gilt und $(E_{1}, || ||_{1})$ BR ist, hat man die Konvergenz von $\sum_{\nu=1}^{\infty} x_{\nu} =:$ x mit $x \in S_{0}$ und $Ax = \sum_{\nu=1}^{\infty} Ax_{\nu} \stackrel{(2)}{=} y$.

b): Es seien nun $E_1 \supset O$ offen und $b \in AO$: Zu einem $a \in O$ mit b = Aa existiert ein $0 < \delta < \infty$ so, daß $\underbrace{\{x \in E_1 : \|x - a\|_1 < \delta\}}_{= \delta S_0 + a} \subset O$; mit ε gemäß a):

$$\mathbb{U}_{b}^{(2)} \ni \left\{ v \in E_{2} : \left\| v \right\|_{2} < \delta \varepsilon \right\} + b \subset A(\delta S_{0} + a) \subset AO.$$

23.2 Satz vom inversen Operator

Vor.:
$$(E_{\nu}, \| \|_{\nu})$$
 \mathbb{K} -BR $(\nu = 1, 2)$, $T \in L(E_1, E_2)$ bijektiv Beh.: T^{-1} ist stetig, also T ein $(NVR-)$ Isomorphismus.

Beweis: nach (23.1) ist T offen (und bijektiv, stetig), nach (7.1) also T^{-1} stetig. \square

23.3 Folgerung

$$\begin{array}{lll} \textit{Vor.:} \ \left(E, \| \ \|_{\nu}\right) \ \mathbb{K}\text{-}\textit{BR} & (\nu = 1, 2), \ \alpha \in \]0, \infty[\ , & \| \ \|_{2} \leq \alpha \ \| \ \|_{1} \\ \\ \textit{Beh.:} \ \| \ \|_{1} \ \textit{und} \ \| \ \|_{2} \ \textit{sind \"{a}quivalent}. \end{array}$$

Beweis: (23.2) anwenden auf $T := id_E$: Die Stetigkeit von

$$id = id^{-1}: (E, || ||_2) \longrightarrow (E, || ||_1)$$

zeigt
$$\|x\|_1 = \|\operatorname{id} x\|_1 \le \|\operatorname{id} \| \|x\|_2$$
 für $x \in E_2$.

Sind $(\mathfrak{R}, \mathbb{O})$, $(\mathfrak{S}, \mathbb{T})$ TRe und $f: \mathfrak{R} \longrightarrow \mathfrak{S}$, dann betrachten wir mit

$$G(f) := \{(x, f(x)) : x \in \mathfrak{R}\}$$
 den "Graphen (von f)".

f heißt "Graphen-abgeschlossen": \iff G(f) abgeschlossen (in $\Re \times \mathfrak{S}$)

23.4 Bemerkung \mathfrak{S} $HdR \wedge f$ stetig $\implies f$ Graphen-abgeschlossen

Beweis: Ist $(a,b) \in \mathfrak{R} \times \mathfrak{S} \setminus G(f)$, also $b \neq f(a)$, dann existieren ein $V_1 \in \mathbb{U}_b$ und ein $V_2 \in \mathbb{U}_{f(a)}$ mit $V_1 \cap V_2 = \emptyset$: Es existiert dazu ein $U \in \mathbb{U}_a$ mit $f(U) \subset V_2$, dann $\mathbb{U}_{(a,b)} \ni U \times V_1 \subset \mathfrak{R} \times \mathfrak{S} \setminus G(f)$.

Es seien jetzt $(E_{\nu}, || \|_{\nu})$ K-NVR $(\nu = 1, 2)$ und $T: E_1 \longrightarrow E_2$.

23.5 Bemerkung

$$\uparrow T Graphen-abgeschlossen
\forall (x_n) \in E_1^{\mathbb{N}} \ \forall x \in E_1 \ \forall y \in E_2 \ [x_n \longrightarrow x \ \land \ Tx_n \longrightarrow y] \implies Tx = y$$

Beweis: Für $(x, y) \in E_1 \times E_2$:

$$(x,y) \in \overline{G(T)} \iff \exists ((x_n,y_n)) \in G(T)^{\mathbb{N}} (x_n,y_n) \longrightarrow (x,y)$$

 $\iff \exists (x_n) \in E_1^{\mathbb{N}} x_n \longrightarrow x \land Tx_n \longrightarrow y$

Hieraus liest man die Behauptung ab.

Anmerkung Ist T nicht stetig, dann kann eine Folge $(x_n) \in E_1^{\mathbb{N}}$ konvergent sein, ohne daß die Folge der Bilder (Tx_n) konvergent ist:

Beispiel

$$E_1 := E_2 := \mathbb{R} \text{ (mit | | wie "üblich")}, Tx := \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}, x_n := \frac{1}{n} \text{ } (n \in \mathbb{N});$$

T ist Graphen-abgeschlossen, jedoch nicht stetig. Zudem ist T nicht "abgeschlossen" in dem Sinne, daß abgeschlossene Mengen jeweils abgeschlossene Bilder haben: Dies zeigt etwa: $T([1, \infty[=]0, 1]$

23.6 Satz vom abgeschlossenen Graphen closed graph theorem

Vor.:
$$(E_{\nu}, \| \|_{\nu})$$
 \mathbb{K} -BR $(\nu = 1, 2)$, $T \in \mathcal{L}(E_1, E_2)$
Beh.: $T \in L(E_1, E_2) \iff T$ Graphen-abgeschlossen

Beweis: \Longrightarrow ": nach (23.4)

Abbildung
$$\varphi \colon G(T) \ni (x, Tx) \longmapsto x \in E_1$$
.

Diese ist linear, stetig und bijektiv; nach (23.2) ist die Umkehrabbildgung $\varphi^{-1} \colon E_1 \ni x \longmapsto (x, Tx) \in G(T)$ stetig und somit auch T.

Beispiel (man vergleiche Seite 55)

$$E_1 := C_1^{\mathbb{R}}[0,1], \ E_2 := C^{\mathbb{R}}[0,1]; \quad \text{beide mit } \| \ \|_{\infty}$$

 $D: E_1 \ni f \longmapsto f' \in E_2 \text{ linear, nicht stetig, aber Graphen-abgeschlossen:}$

$$(f_n) \in E_1^{\mathbb{N}}, f \in E_1, g \in E_2 \text{ so, daß } f_n \longrightarrow f \land f'_n \longrightarrow g \stackrel{\text{(AI, (6.7.5))}}{\Longrightarrow} f' = g$$

Dies steht nicht im Widerspruch zu (23.6), da $(E_1, \| \|_{\infty})$ kein BR ist.

23.7 Es seien (E, || ||) ein \mathbb{K} -BR und E_{ν} abgeschlossene URe von E $(\nu = 1, 2)$ mit $E = E_1 + E_2$ und $E_1 \cap E_2 = \{0\}$.

Für $x \in E$ existieren dann eindeutig $x_{\nu} \in E_{\nu}$ mit $x = x_1 + x_2$; die Abbildung

$$T \colon E_1 \times E_2 \ni (x_1, x_2) \longmapsto x_1 + x_2 \in E$$

ist daher (linear und) bijektiv.

Wegen $||T(x_1, x_2)|| = ||x_1 + x_2|| \le ||x_1|| + ||x_2||$ ist T auch stetig (bei 0); nach (23.2) ist somit T ein (NVR-) Isomorphismus

23.8 Sind (E, || ||) ein K-BR und $P: E \longrightarrow E$ ein "Projektor", d. h.: $P \in L(E, E)$ mit $P^2 := P \circ P = P$, dann ist auch $Q := \mathrm{id}_E - P$ ein *Projektor*. Mit diesem gilt: PQ = 0, $P + Q = \mathrm{id}_E$ und $E_1 := PE$, $E_2 := QE$ erfüllen die Voraussetzung von (23.7). $(E_1 = \mathrm{Kern} \ Q, \ E_2 = \mathrm{Kern} \ P$: abgeschlossen; Rest: $\square \square \square$)

24 Schwache Topologien; Satz von Alaoglu

Es seien $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, E = (E, a, s) ein \mathbb{K} -VR und $\Gamma \subset E^*$.

Gesucht ist die gröbste Topologie auf E derart, daß $\varphi \colon E \longrightarrow \mathbb{K}$ stetig ist für alle $\varphi \in \Gamma$, also — man vergleiche Abschnitt 5 — die zugehörige initiale Topologie. Wir bezeichnen diese als " Γ -Topologie" oder mit " $\sigma(\Gamma)$ " oder genauer " $\sigma(E,\Gamma)$ ".

Unmittelbar aus der Definition liest man ab:

$$\sigma(\Gamma) = \sigma(\langle \Gamma \rangle)$$

Bezeichnung Γ "total": $\iff \forall x \in E \setminus \{0\} \ \exists \varphi \in \Gamma \ \varphi x \neq 0$

Zusätzlich zu den allgemeinen Überlegungen aus 5. ist hier noch die "Linearität" zu berücksichtigen.

Für
$$p \in E$$
 und $U \subset E$ gilt — nach (5.1.c) —

U ist $(\sigma(\Gamma)$ -)Umgebung von p genau dann, wenn $U \supset \bigcap_{\varphi \in A} \varphi^{-1}(U_{\varphi})$ mit $\Gamma \supset A$ endlich und $U_{\varphi} \in \mathbb{U}_{\varphi p}^{\mathbb{K}}$ für $\varphi \in A$, also offenbar genau dann, wenn $U \supset \bigcap_{\varphi \in A} \varphi^{-1}(U_{\varphi p}^{\varepsilon})$ mit $\Gamma \supset A$ endlich und $\varepsilon \in]0, \infty[$.

Für $\Gamma \supset A$ endlich, $\varepsilon \in]0, \infty[$ und $p \in E$:

$$\bigcap_{\varphi \in A} \varphi^{-1}(U_{\varphi p}^{\varepsilon}) \ = \ \left\{ x \in E : \forall \, \varphi \in A \quad |\varphi x - \varphi p| < \varepsilon \right\} \ =: \ U(p;A,\varepsilon)$$

Für $x \in E$ gilt: $x \in U(p; A, \varepsilon) \iff \forall \varphi \in A \ \varphi x \in U^{\varepsilon}_{\varphi v}$.

24.0
$$U(p; A, \varepsilon) = U(0; A, \varepsilon) + p$$

Die Γ-Topologie ist daher schon völlig bestimmt durch die Umgebungsbasis von 0:

$$\{U(0; A, \varepsilon) : \Gamma \supset A \text{ endlich}, \varepsilon \in]0, \infty[\}$$

- **24.1 Trivialität** $F\ddot{u}r$ $\Gamma_1 \subset \Gamma_2 \subset E^*$: $\sigma(\Gamma_1) \subset \sigma(\Gamma_2)$
- **24.2** Bemerkung Mit $\sigma := \sigma(\Gamma)$ α) $a: (E, \sigma) \times (E, \sigma) \longrightarrow (E, \sigma)$ ist stetig.

$$\beta$$
) $s: \mathbb{K} \times (E, \sigma) \longrightarrow (E, \sigma)$ ist stetig.

$$\gamma$$
) Γ total \Longrightarrow (E, σ) HdR

Beweis: Für $p, q \in E, \beta \in \mathbb{K}, \Gamma \supset A$ endlich und $\varepsilon > 0$:

- α): $U(p; A, \varepsilon/2) + U(q; A, \varepsilon/2) \subset U(p+q; A, \varepsilon)$
- β): Die Stetigkeit der Multiplikation in \mathbb{K} liefert: Zu $\varphi \in A$ existiert $\eta = \eta(\varphi) > 0$ so, daß $U_{\beta}^{\eta} \cdot U_{\varphi p}^{\eta} \subset U_{\beta \varphi p}^{\varepsilon}$; da A endlich ist, existiert $\delta := \min_{\varphi \in A} \eta(\varphi)$ (> 0); damit gilt: $\forall \varphi \in A \ U_{\beta}^{\delta} \cdot U_{\varphi p}^{\delta} \subset U_{\beta \varphi p}^{\varepsilon} = U_{\varphi(\beta p)}^{\varepsilon}$; das zeigt $U_{\beta}^{\delta} \cdot U(p; A, \delta) \subset U(\beta p; A, \varepsilon)$.
- γ): Falls $p \neq q$: Es existiert $\varphi \in \Gamma$ so, daß $|\varphi p \varphi \cdot q| = |\varphi(p q)| =: 2\varepsilon > 0$, damit: $U(p; \{\varphi\}, \varepsilon) \cap U(q; \{\varphi\}, \varepsilon) = \emptyset$
- 24.3 Bemerkung

Vor.:
$$x \in E$$
, \mathbb{F} FB auf E
Beh.: $\mathbb{F} \longrightarrow x \ (\sigma(\Gamma)) \iff \forall \varphi \in \Gamma \ \varphi \mathbb{F} \longrightarrow \varphi x$

Dabei natürlich $\varphi \mathbb{F} := \varphi(\mathbb{F})$ (Bild von \mathbb{F} unter φ).

Beweis:

$$\begin{array}{l} \ell.\,S. \iff \mathbb{U}_{x}^{\sigma} \leq \mathbb{F} \iff \forall\, U \in \mathbb{U}_{x}^{\sigma} \,\,\exists\, F \in \mathbb{F} \,\, F \subset U \\ \iff \forall\, A \,\, (\mathrm{endlich}, \,\subset \Gamma) \,\,\forall\, \varepsilon > 0 \,\,\exists\, F \in \mathbb{F} \,\, F \subset U(x;A,\varepsilon) \\ \iff \forall\, \varphi \in \Gamma \,\,\forall\, \varepsilon > 0 \,\,\exists\, F \in \mathbb{F} \,\, F \subset U\big(x;\{\varphi\},\varepsilon\big) \\ \iff \forall\, \varphi \in \Gamma \,\,\forall\, \varepsilon > 0 \,\,\exists\, F \in \mathbb{F} \,\, \varphi F \subset U_{\varphi x}^{\varepsilon} \iff r.\,S. \end{array}$$

24.4 Folgerung

Vor.:
$$x \in E$$
, $(x_n) \in E^{\mathbb{N}}$
Beh.: $x_n \longrightarrow x \ (\sigma(\Gamma)) \iff \forall \varphi \in \Gamma \ \varphi x_n \longrightarrow \varphi x$

24.5 Bemerkung *Vor.:* (E, || ||) \mathbb{K} -*NVR*

Beh.:
$$\alpha$$
) E' ist total.

$$\beta$$
) $\varkappa E$ ist total. (für E')

$$\gamma$$
) $\sigma(E, E') \subset \mathbb{O}(\| \| \|)$

Beweis: α): nach (20.5.b) β): trivial

 γ): $\varphi \in E'$ bedeutet gerade $(\varphi \in E^* \text{ und}) \varphi : (E, \mathbb{O}(|| ||)) \longrightarrow (\mathbb{K}, ||)$ stetig, also folgt die Behauptung nach Definition von $\sigma(E, E')$.

Bezeichnung Ist $(E, \| \|)$ ein K-NVR, dann bezeichnet man $\mathbb{O}(\| \|) \text{ als } \text{ "Norm-Topologie" oder "starke Topologie"},$ $\sigma(E, E') \text{ als } \text{ "schwache Topologie" und}$ $\sigma(E', E) := \sigma(E', \varkappa E) \text{ als } \text{ "E-Topologie" oder "schwach*-Topologie"}.$

Nach (24.1) und (24.5. γ) hat man:

24.6
$$\sigma(E', E) \subset \sigma(E', E'') \subset \mathbb{O}(\| \|)$$

$$Operator norm$$

Nach (24.5) ist (in einem NVR) insbesondere jede stark-konvergente Folge auch schwach-konvergent. Die Umkehrung gilt i. a. nicht:

Beispiel Wir betrachten den Raum ℓ_2 (mit der Norm $\| \|_2$) und darin die Vektoren $\mathfrak{e}_n := (\delta_{j,n})_{j \in \mathbb{N}} (n \in \mathbb{N})$. Dann gilt $\| \mathfrak{e}_n - \mathfrak{e}_m \|_2 = \sqrt{2}$ für $n, m \in \mathbb{N}$ mit $n \neq m$. Für $\varphi \in \ell'_2$ existiert — nach Übung (10.3.b) — ein $a = (a_n) \in \ell_2$ so, daß $\varphi z = \sum_{j=1}^{\infty} a_j z_j$ für $z = (z_n) \in \ell_2$, folglich $\varphi \mathfrak{e}_n = a_n \longrightarrow 0 \ (n \longrightarrow \infty)$.

$$\textbf{24.7 Satz} \qquad \boxed{ \left\langle \Gamma \right\rangle \ = \ \left\{ \varphi \in E^* | \ \varphi \colon \left(E, \sigma(\Gamma) \right) \longrightarrow \mathbb{K} \ stetig \right\} }$$

Nach der Definition von $\sigma(\Gamma)$ hat man $\Gamma \subset \{\dots\}$, also auch $\langle \Gamma \rangle \subset \{\dots\}$. Für die andere Inklusion zeigen wir zunächst den

24.8 Hilfssatz

Vor.:
$$n \in \mathbb{N}$$
; $g, f_1, \dots, f_n \in E^*$; $g \notin \langle f_1, \dots, f_n \rangle$
Beh.: Es existiert ein $a \in E$ mit $g(a) = 1$ und $f_1(a) = \dots = f_n(a) = 0$.

Beweis (des Hilfssatzes): Sonst $\bigcap_{\nu=1}^n \operatorname{Kern} f_{\nu} \subset \operatorname{Kern} g$ ①

Wir betrachten die Abbildung

$$T: E \ni x \longmapsto (f_1 x, \dots, f_n x) \in \mathbb{K}^n;$$