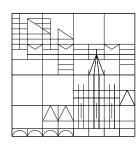
Universität Konstanz Fachbereich Mathematik und Statistik Dieter Hoffmann Markus Sigg 15.7.2003



11. Übung zur Analysis IV

Die folgenden Aufgaben sind zum Vortragen in den Übungstunden am 23.7.2003 vorzubereiten und, soweit schriftlich bearbeitet, bis zum 21.7.2003 um 15:00 Uhr in die jeweiligen Gruppenbriefkästen einzuwerfen.

- (11.1) Zu Bemerkung 25.3 der Vorlesung. Zeigen Sie:
 - (a) Wird eine Norm durch ein Skalarprodukt erzeugt, so erfüllt sie die Polarisierungsformel.
 - (b) Erfüllt eine Norm die Parallelogrammgleichung, dann wird durch die Polarisierungsformel ein Skalarprodukt definiert, das die Norm erzeugt.
 - (c) Satz von JORDAN / VON NEUMANN: Eine Norm wird genau dann durch ein Skalarprodukt erzeugt, wenn sie die Parallelogrammgleichung erfüllt. Das Skalarprodukt ist dann gegeben durch die Polarisierungsformel.
- (11.2) Es seien E und F normierte Vektorräume. Für $T \in L(E,F)$ definieren wir

$$(T'y')x := y'(Tx)$$
 $(x \in E, y' \in F')$.

Zeigen Sie:

- (a) Hierdurch wird ein Operator $T' \in L(F', E')$ (adjungierter Operator zu T) erklärt.
- (b) $': L(E,F) \ni T \longmapsto T' \in L(F',E')$ ist linear und isometrisch. ¹
- (c) Ist G ein weiterer normierter Vektorraum und $S \in L(F, G)$, so gilt (ST)' = T'S'.
- (11.3) Es seien H und K Hilberträume, dazu $\varphi_H : H \longrightarrow H'$ und $\varphi_K : K \longrightarrow K'$ gemäß 25.14 der Vorlesung. Für $T \in L(H,K)$ definieren wir $T^* := \varphi_H^{-1} T' \varphi_K \in L(K,H)$. Zeigen Sie:
 - (a) Für alle $x \in H$ und $y \in K$ gilt $\langle Tx, y \rangle = \langle x, T^*y \rangle$.
 - (b) $T^{**} = T$.
 - (c) *: $L(H,K) \ni T \longmapsto T^* \in L(K,H)$ ist bijektiv, konjugiert linear und isometrisch.
 - (d) Ist G ein weiterer Hilbertraum und $S \in L(K, G)$, so gilt $(ST)^* = T^*S^*$.
 - (e) $||TT^*|| = ||T^*T|| = ||T||^2$
 - (f) $\ker T = (\operatorname{ran} T^*)^{\perp}$ und $\ker T^* = (\operatorname{ran} T)^{\perp}$ (ker: Kern, ran: Bild)
- (11.4) Es sei H ein Hilbertraum. Man nennt $T \in L(H)$ genau dann *selbstadjungiert*, wenn $T^* = T$ gilt, d. h. $\langle Tx, y \rangle = \langle x, Ty \rangle$ für alle $x, y \in H$. Zeigen Sie:
 - (a) Satz von HELLINGER / TOEPLITZ: Ist $T: H \to H$ linear mit $\langle Tx, y \rangle = \langle x, Ty \rangle$ für alle $x, y \in H$, so ist T stetig (also selbstadjungiert). ²
 - (b) Ist $T \in L(H)$ selbstadjungiert, so gilt $||T|| = \sup_{||x|| < 1} |\langle Tx, x \rangle|$.
 - (c) Im Fall $\mathbb{K} = \mathbb{C}$ ist $T \in L(H)$ genau dann selbstadjungiert, wenn $\langle Tx, x \rangle \in \mathbb{R}$ für alle $x \in H$.

¹Tip: Für die Isometrie Folgerung 20.5 der Vorlesung benutzen.

²Tip: Satz vom abgeschlossenen Graphen.

³Tip: Parallelogrammgleichung, siehe etwa Satz V.5.7 bei Werner. ;-)