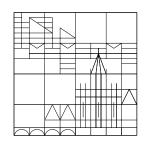
Universität Konstanz Fachbereich Mathematik und Statistik Dieter Hoffmann Markus Sigg 13.5.2003



2. Übung zur Analysis IV

Die folgenden Aufgaben sind zum Vortragen in den Übungstunden am 21.5.2003 vorzubereiten und, soweit schriftlich bearbeitet, bis zum 19.5.2003 um 10:00 Uhr in die jeweiligen Gruppenbriefkästen einzuwerfen.

(2.1) Bestimmen Sie $\overset{\circ}{A}$, \overline{A} , \dot{A} und ∂A für die folgenden Teilmengen A von \mathbb{R}^2 :

$$\{\pi\} \times \{\frac{1}{n} : n \in \mathbb{N}\}$$
 , $\mathbb{Q} \times \mathbb{Q}$, $\{(x, \sin \frac{1}{x}) : x \in]0, 1]\}$

- (2.2) Zeigen Sie: In jedem SMR (\mathfrak{R}, δ) gilt $\overline{U_a^{\varepsilon}} \subset K_a^{\varepsilon}$ für alle $a \in \mathfrak{R}$ und $\varepsilon > 0$. Gilt i. a. auch "="?
- (2.3) X sei eine nicht-leere Menge und $\mathfrak{F}(X)$ die Menge der \mathbb{K} -wertigen Abbildungen auf X. Für $0 \neq B \subset X$, $f \in \mathfrak{F}(X)$ und $\varepsilon > 0$ sei

$$U_f^{B,\varepsilon} := \left\{ g \in \mathfrak{F}(X) : \sup_{x \in B} |f(x) - g(x)| < \varepsilon \right\}.$$

Zeigen Sie:

(a) Für $\emptyset \neq B \subset X$ definiert

$$d_B(f,g) := \min(1, \sup_{x \in B} |f(x) - g(x)|) \quad (f,g \in \mathfrak{F}(X))$$

eine Semimetrik d_B auf $\mathfrak{F}(X)$. Für alle $\varepsilon \in]0,1[$ und $f,g \in \mathfrak{F}(X)$ gilt

$$g \in U_f^{B,\varepsilon} \iff d_B(f,g) < \varepsilon.$$

(b) Ist $\mathbb{B} \subset \mathbb{P}(X)$ mit $\bigcup_{B \in \mathbb{B}} B = X$, so wird durch

$$\mathbb{U}_f^\mathbb{B}:=\big\{\bigcap_{B\in\mathbb{B}_0}U_f^{B,\varepsilon}:\mathbb{B}\supset\mathbb{B}_0 \text{ endlich}, \varepsilon>0\big\}$$

eine Umgebungsbasis für $f \in \mathfrak{F}(X)$ einer Topologie $\mathbb{O}(\mathbb{B})$ (*Topologie der gleichmäßigen Konvergenz auf Mengen in* \mathbb{B}) definiert. $\mathfrak{F}(X)$ wird damit zu einem Hausdorffraum.

(c) Für $\mathbb{B} := \{\{x\} : x \in X\}$ bezeichnet man $\mathbb{O}(\mathbb{B})$ als *Topologie der punktweisen Konvergenz* (warum?). Zeigen Sie, daß bei überabzählbarem X diese Topologie *nicht* durch eine Metrik erzeugt werden kann ($\mathbb{O}(\mathbb{B})$ ist *nicht metrisierbar*). Genauer: Für

$$A := \{ f \in \mathfrak{F}(X) : f(X) \subset \{0,1\} \land f^{-1}(\{0\}) \text{ endlich} \}$$

gilt: $0 \in A$, aber es gibt keine Folge (f_n) in A mit $f_n \longrightarrow 0$ in $\mathbb{O}(\mathbb{B})$ (d. h. punktweise).

- (d) Zeigen Sie: Ist \mathbb{B} höchstens abzählbar, so ist $\mathbb{O}(\mathbb{B})$ metrisierbar. $\mathbb{D}(\mathbb{B})$
- (2.4) \Re sei ein Hausdorffraum und $M \subset \Re$. Zeigen Sie:
 - (a) $\forall p \in \mathfrak{R} \quad (p \in \dot{M} \iff \forall U \in \mathbb{U}_p \ \#(U \cap M) = \infty)$
 - (b) $\dot{M} \subset \dot{M}$
 - (c) Die Aussagen (a) und (b) gelten *nicht* in beliebigen topologischen Räumen.
- (2.5) (a) Zeigen Sie, daß ein topologischer Raum genau dann ein Hausdorffraum ist, wenn auf ihm jede konvergente Filterbasis einen *eindeutigen* Grenzwert besitzt.
 - (b) Zeigen Sie, daß in 3.2 der Vorlegung "FB" nicht durch "Filter" ersetzt werden kann.

¹Diese Aufgabe ist mathematisch anspruchsvoller als die anderen.