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– A little bit of history –

2016 was the 100th anniversary of the
Father of Information Theory

Claude Shannon (1916 - 2001)1

1
picture from www.techzibits.com
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Shannon’s pioneering works in information theory:

Channel coding (1948):

Noisy-channel coding theorem/Shannon capacity (maximum
information transfer rate for a given channel and noise level)

Compression (1948):

Source coding theorem (limits to possible data compression)

Cryptography (1949):

One-time pad is the only theoretically unbreakable cipher
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Shannon provided answers to questions of the type

“What is possible in theory?”

Subsequent research:

how to algorithmically achieve those optimal scenarios

other types of channels

lossy compression

computationally secure cryptography
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Channel Coding

... deals with noisy transmission of information

over space (communication)

over time (storage)

To deal with the noise

the data is encoded with added redundancy,

the receiver can “filter out” the noise (decoding)

and then recover the sent data.
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Classical channel coding:

The closeness can be measured by the Hamming metric.

The larger the distance between the codewords, the more
errors can be corrected.

Tradeoff: The longer the codewords, the lower the
information transmission rate.
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Errors/noise

Maybe you wonder why the error correction is so
important.

This is because we do not live in a perfect vacuum where
everything works “as it should”.

Noise is around everywhere, think of particles in the air
(when sending data wireless), or scratches on a CD (when
storing data on the CD), or electromagnetic interference in
cables (when sending data over wires).

However, we always assume that errors are less likely than
noise-free transmission (per element). Thus the most likely
sent codeword corresponds to the one with the least
number of errors, compared to the received word.
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Data representation over finite fields

You have probably heard that computers (or smart phones
and similar devices) work with binary data.

However, some technologies like e.g. flash drives also use
more numbers than just 0 and 1.

Even for binary representation it is often advantageous to
represent data in binary extension fields.

In general we say that data is represented as vectors over
some finite field Fq.
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Definition

A block code is a subset C ⊆ Fn
q . The Hamming distance of

u, v ∈ Fn
q is defined as

dH((u1, . . . , un), (v1, . . . , vn)) := |{i | ui 6= vi}|.

The minimum (Hamming) distance of the code is defined as

dH(C) := min{dH(u, v) | u, v ∈ C, u 6= v}.

The transmission rate of C is defined as logq(|C|)/n.
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Theorem

Let C be a code with minimum Hamming distance dH(C) = d.
Then for any codeword c ∈ C any (dH(C)− 1)/2 errors can be
corrected.

=⇒ the error correction capability of C is b(dH(C)− 1)/2c
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Example (repetition code):

Remember the code from the introduction slides:

C = {(000000), (111111)}

This code has transmission rate log2(2)/6 = 1/6.

This code has minimum Hamming distance 6 (since all
coordinates differ).

The error correction capability is b(6− 1)/2c = 2.

Indeed, if we receive e.g. (110000), the unique closest
codeword is (000000).

However, for (111000) there is no unique closest codeword,
hence we cannot correct 3 errors.
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The general repetition code:

Definition

The repetition code over Fq of length n is defined as

C := {(x, x, . . . , x)︸ ︷︷ ︸
n

| x ∈ Fq}.

It has cardinality q and minimum Hamming distance n.

transmission rate = 1/n

error correction capability = b(n− 1)/2c
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Typical questions in channel coding theory:

For a given error correction capability, what is the best
transmission rate?
=⇒ packing problem in metric space (Fn

q , dH)

How can one efficiently encode, decode, recover the
messages?
=⇒ algebraic structure in the code

What is the trade-off between the two above?

Typical tools used in classical setup:

linear subspaces of Fn
q

polynomials (and their roots) in Fq[x]

finite projective geometry
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The most prominent family of error-correcting codes
–

Reed-Solomon codes
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Definition (Reed-Solomon codes)

Let a1, . . . , an ∈ Fq be distinct. The code

C = {(f(a1), f(a2), . . . , f(an)) | f ∈ Fq[x], deg f < k}

is called a Reed-Solomon code of length n and dimension k. It
has minimum Hamming distance n− k + 1 (optimal).

A Reed-Solomon code is a linear subspace of Fn
q of dimension k,

it can be represented by a (row) generator matrix

G =


1 1 . . . 1
a1 a2 . . . an
a21 a22 . . . a2n
...

...

ak−1
1 ak−1

2 . . . ak−1
n

 .
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Reed-Solomon Codes

Example:

Consider F3 = {0, 1, 2}, n = 3, k = 2 and the evaluation
points a1 = 0, a2 = 1, a3 = 2.

Polynomials of degree ≤ 0: 0, 1, 2

Polynomials of degree 1: x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2

Codewords:

f(x) (f(0), f(1), f(2))

0 (000)
1 (111)
2 (222)
x (012)

x+ 1 (120)
x+ 2 (201)

2x (021)
2x+ 1 (102)
2x+ 2 (210)
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f(x) (f(0), f(1), f(2))

0 (000)
1 (111)
2 (222)
x (012)

x+ 1 (120)
x+ 2 (201)

2x (021)
2x+ 1 (102)
2x+ 2 (210)

The generator matrix in reduced row echelon form of this code
is

G =

(
1 0 2
0 1 2

)
.

=⇒ any two words differ in ≥ n− k + 1 = 3− 2 + 1 = 2
positions (dH(C) = 2).
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Why Reed-Solomon codes are awesome:

One can show that for a linear code of dimension k and
length n, the minimum Hamming distance cannot exceed
n− k + 1 (Singleton bound).
=⇒ RS-codes are optimal, since they reach this bound.

Decoding can be translated into a polynomial interpolation
problem.
=⇒ RS-codes can be decoded quite efficiently.

Why RS-codes are not the solution to everything:

The underlying field size needs to be as large as the length!

18 / 39
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Network channel

The multicast model:

All receivers want to get the same information at the same time.
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Example (Butterfly Network)

Linearly combining is better than forwarding:

R2

R1

a

a

a

a
a

b b

b

a

R1 receives only a, R2 receives a and b.

Forwarding: need 2 transmissions to transmit a, b to both
receivers

Linearly combining: need 1 transmission to transmit a, b to
both receivers
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Example (Butterfly Network)

Linearly combining is better than forwarding:

R2

R1

a

a

a

a+b
a+b

b b

b

a+b

R1 and R2 can both recover a and b with one operation.

Forwarding: need 2 transmissions to transmit a, b to both
receivers

Linearly combining: need 1 transmission to transmit a, b to
both receivers
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It turns out that linear combinations at the inner nodes are
“sufficient” to reach capacity:

Theorem

One can reach the capacity of a single-source multicast network
channel with linear combinations at the inner nodes.

When we consider large or time-varying networks, we allow the
inner nodes to transmit random linear combinations of their
incoming vectors.

Theorem

One can reach the capacity of a single-source multicast network
channel with random linear combinations at the inner nodes,
provided that the field size is large.
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Two settings for linear network coding:

Coherent (linear) network coding – we prescribe each inner
node the linear transformation

Non-coherent or random (linear) network coding

e.g. time-varying networks, large networks, ...
allow each inner node to send out a random linear
combination of its incoming vectors
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Problem 1: errors propagate!

b
b

+e

a

c

Problem 2: receiver does not know the random operations (in
non-coherent setting)

Solution: Use a metric space such that

1 # of errors is reflected in the distance between points, and

2 the points are invariant under linear combinations (for
non-coherent).
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For the coherent case:

Definition

matrix space: Fm×n
q

rank distance: dR(U, V ) := rank(U − V )

Fm×n
q equipped with dR is a metric space.

Definition

A rank-metric code is a subset of Fm×n. The minimum rank
distance of the code C ⊆ Fm×n is defined as

dR(C) := min{dR(U, V ) | U, V ∈ C,U 6= V }.

A rank-metric code C can correct any error (matrix) of rank at
most (dR(C)− 1)/2.
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Example (in F2×4
2 )

C =

{(
1 0 0 0
0 1 0 0

)
,

(
1 0 1 0
0 1 0 1

)}
, dR(C) = 2.

1000

0100

1000

0100

1100

1000
1100

1100
0100

No errors: receive

(
1 0
1 1

)
︸ ︷︷ ︸

A1

·sent, respectively

(
1 1
0 1

)
︸ ︷︷ ︸

A2

·sent
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Example (in F2×4
2 )

C =

{(
1 0 0 0
0 1 0 0

)
,

(
1 0 1 0
0 1 0 1

)}
, dR(C) = 2.

1000

0100

1001

0100

1101

1001

1101

1101

0100

+0001

One error:
dR(A−1

i · received, sent) = 1, dR(A−1
i · received, other) = 2
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For the non-coherent case:

Definition

Grassmann variety: Gq(k, n) := {U ≤ Fn
q | dim(U) = k}

subspace distance: dS(U, V ) := 2k − 2 dim(U ∩ V )

Gq(k, n) equipped with dS is a metric space.

Definition

A (constant dimension) subspace code is a subset of Gq(k, n).
The minimum distance of the code C ⊆ Gq(k, n) is defined as

dS(C) := min{dS(U, V ) | U, V ∈ C,U 6= V }.

The error-correction capability in the network coding setting of
a subspace code C is (dS(C)− 1)/2.

27 / 39
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Example (in G2(2, 4))

C =

{
rs

(
1 0 0 0
0 1 0 0

)
, rs

(
1 0 1 0
0 1 0 1

)}
, dS(C) = 4.

1000

0100

1000

0100

1100

1000
1100

1100
0100

No errors: receive a (different) basis of the same vector space
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Example (in G2(2, 4))

C =

{
rs

(
1 0 0 0
0 1 0 0

)
, rs

(
1 0 1 0
0 1 0 1

)}
, dS(C) = 4.

1000

0100

1001

0100

1101

1001

1101

1101

0100

+0001

One error: dS(received, sent) = 2, dS(received, other) = 4
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Research goals

Find good packings in (Fm×n
q , dR), respectively

(Gq(k, n), dS).
=⇒ best transmission rate for given error correction
capability

Find good packings in Fm×n
q , respectively Gq(k, n), with

algebraic structure.
=⇒ good encoding/decoding algorithms

Typical tools

linearized polynomials in Fq[x]

Singer cycles, difference sets

(partial) spreads
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The most prominent family of rank-metric codes
–

Gabidulin codes
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Gabidulin Codes

Preliminaries:

Isomorphism:
Fqm
∼= Fm

q

This induces another isomorphism:

Fn
qm
∼= Fm×n

q

Linearized polynomial:

f(x) =
d∑

i=0

fix
qi

The set of all linearized polynomials is denoted by Lq[x].
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Definition (Gabidulin codes)

Let a1, . . . , an ∈ Fqm be linearly independent over Fq. The code

C = {(f(a1), f(a2), . . . , f(an)) | f ∈ Lq[x],deg f < qk}

is called a Gabidulin code of length n and dimension k. It has
minimum rank distance n− k + 1 (optimal).

A Gabidulin code is a linear subspace of Fn
qm of dimension k, it

can be represented by a (row) generator matrix

G =


a1 a2 . . . an
aq1 aq2 . . . aqn

aq
2

1 aq
2

2 . . . aq
2

n
...

...

aq
k−1

1 aq
k−1

2 . . . aq
k−1

n

 .
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a1 a2 . . . an
aq1 aq2 . . . aqn

aq
2

1 aq
2

2 . . . aq
2

n
...

...

aq
k−1

1 aq
k−1

2 . . . aq
k−1

n

 .
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Example:

Consider F4 = {0, 1, α, α+ 1}, n = 2, k = 1 and the
evaluation points a1 = 1, a2 = α.

Lin. polynomials of degree ≤ q0: 0, x, αx, (α+ 1)x

Codewords:

f(x) (f(1), f(α)) matrix

0 (0, 0)

(
0 0
0 0

)
x (1, α)

(
1 0
0 1

)
αx (α, α+ 1)

(
0 1
1 1

)
(α+ 1)x (α+ 1, 1)

(
1 1
1 0

)
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f(x) (f(1), f(α)) matrix

0 (0, 0)

(
0 0
0 0

)
x (1, α)

(
1 0
0 1

)
αx (α, α+ 1)

(
0 1
1 1

)
(α+ 1)x (α+ 1, 1)

(
1 1
1 0

)
The generator matrix in reduced row echelon form of this code
is

G =
(
1 α

)
.

=⇒ The difference of any two words has full rank: dR(C) = 2.
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Why Gabidulin codes are awesome:

One can show that for a linear rank-metric code of
dimension k and size m× n, the minimum rank distance
cannot exceed max(n,m)(min(n,m)− k + 1)
(Singleton-like bound).
=⇒ Gabidulin codes are optimal, since they reach this
bound.

Decoding can be translated into a linearized polynomial
interpolation problem.
=⇒ Gabidulin codes can be decoded quite efficiently.

Difference to RS-codes:

Although m needs to be at least n, this does not matter
much – we can simply transpose the matrices to get a
rank-metric code with m ≤ n.
Hence, we can construct Gabidulin codes for any q, n,m, k!
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How to use Gabidulin codes for the non-coherent
setting
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Theorem

Let C ⊆ Fk×(n−k)
q be a rank-metric code with minimum rank

distance dR. Then the lifted code

lift(C) := {rs[Ik | U ] | U ∈ C}

is a subspace code in Gq(k, n) with minimum subspace distance
dS = 2dR.

Lifted Gabidulin codes are not optimal, but only a factor 4
away from the theoretical upper bound on the cardinality
(therefore they are asymptotically optimal).

Decoding the lifted code basically translates to decoding
the original rank-metric code.
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Summary

We gave an introduction to classical (channel) coding
theory.

codewords are vectors over finite fields

The most prominent family of codes for this setup are the
Reed-Solomon codes.

We gave an introduction to network coding theory:

coherent (codewords are matrices)
non-coherent or random (codewords are subspaces)

The most prominent family of codes for this setup are the
(lifted) Gabidulin codes (also called Reed-Solomon-like
codes).
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Outlook

Rank-metric codes (and sometimes subspace codes) are
also used in cryptography.
(Here also non-Gabidulin codes are of interest.)

Gabidulin codes are also used in distributed storage.

Other constructions of subspace codes use techniques from

projective geometry (spreads, sunflowers)
enumerative geometry (intersection numbers)
q-analogs of designs (combinatoricss)
group theory (orbits in Gq(k, n)) .

Thank you for your attention!
Questions? – Comments?
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