Refereed publications:
- On Rayner structures (with Salma Kuhlmann and Michele Serra), Comm. Algebra 50 (2022) 940–948, doi:10.1080/00927872.2021.1976789. — Review Zbl 07482325
- Strongly NIP almost real closed fields (with Salma Kuhlmann and Gabriel Lehéricy), MLQ Math. Log. Q. 67 (2021) 321–328, doi:10.1002/malq.202000060. — Review MR4370208.
- Ordered fields dense in their real closure and definable convex valuations (with Salma Kuhlmann and Gabriel Lehéricy), Forum Math. 33 (2021) 953–972, doi:10.1515/forum-2020-0030.
- Models of true arithmetic are integer parts of models of real exponentation (with Merlin Carl), J. Log. Anal. 13:3 (2021) 1–21, doi:10.4115/jla.2021.13.3. — Review MR4257176
- Value groups and residue fields of models of real exponentiation, J. Log. Anal. 11:1 (2019) 1–23, doi:10.4115/jla.2019.11.1. — Review MR3978729, Zbl 07082963.
Non-refereed publications:
Ordered Fields Dense in Their Real Closure and Definable Convex Valuations (with
Salma Kuhlmann and
Gabriel Lehéricy),
Proceedings of the Séminaire de Structures Algébriques Ordonnées 2018–2020.
Strongly NIP Almost Real Closed Fields (with
Salma Kuhlmann and
Gabriel Lehéricy),
Proceedings of the Séminaire de Structures Algébriques Ordonnées 2018–2020.
O-minimal exponential fields and their residue fields (extended abstract),
Oberwolfach Reports 13 (2016) 3357–3359,
doi:10.4171/OWR/2016/60.
Preprints:
- Definability of henselian valuations by conditions on the value group (with Salma Kuhlmann and Moritz Link), to appear in J. Symb. Log., 2022, doi:10.1017/jsl.2022.34.
- Definable valuations on ordered fields (with Philip Dittmann, Franziska Jahnke and Salma Kuhlmann), to appear in Model Theory, 2023, arXiv:2206.15301.
- Generalised power series determined by linear recurrence relations (with Salma Kuhlmann and Michele Serra), 2022, arXiv:2206.04126.
- On Strongly NIP Ordered Fields and Definable Convex Valuations (with Salma Kuhlmann and Gabriel Lehéricy), 2019, arXiv:1810.10377.
Theses:
Doctoral thesis
Algebraic and Model Theoretic Properties of O-minimal Exponential Fields (October 2015 – July 2019)
published in
KOPS (2019),
urn:nbn:de:bsz:352-2-166bghaubh8tf9.
Supervisor:
Prof. Salma Kuhlmann
University of Konstanz
Report on significant results
Master's thesis
Schanuel's Conjecture and Exponential Fields (March 2015)
(
updated version,
résumé)
Supervisor:
Prof. Jonathan Pila FRS
University of Oxford
Bachelor's thesis
Constructions of the real numbers – a set theoretical approach (March 2014)
(
updated version,
presentation)
Supervisor:
Dr Peter M. Neumann OBE DSc
University of Oxford
Teaching materials:
Grundlagen der Mathematik für die Betriebswirtschaftslehre, Eine elementare Einführung für den Studienbeginn, BoD, 2020,
ISBN 9783752623550. — E-Book ISBN 9783752652802.
Grundlagen der Statistik und Einführung in die deskriptive Statistik, compendium letter,
Allensbach University, 2020.
Weiterführende Methoden der deskriptiven und induktiven Statistik, compendium letter,
Allensbach University, 2020.
arXiv public author identifier
http://arxiv.org/a/krapp_l_1.
orcid.org/0000-0003-3102-1923
Last update: