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VC Dimension

Throughout this section we fix a language L, a complete L-theory T and a monster
model M of T . We abbreviate M |= ϕ by |= ϕ.

Definition
Let ϕ(x , y) be a formula. The Vapnik–Chervonenkis dimension (VC dimension) of
ϕ is defined as

vc(ϕ(x ; y)) :=
max{n < ω | ∃(ai)i<n∃(bJ)J⊆{0,...,n−1} [ |= ϕ(ai ; bJ) if and only if i ∈ J ]}

if the maximum exists, and ∞ otherwise.
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VC Dimension

Example
Let Tdlo be the theory of dense linear ordered without endpoints. Consider the formula
ϕ(x ; y) given by x < y .
Let a0 ∈M be arbitrary and set b∅ = a0 and b{0} > a0. Then 6|= a0 < b∅ and
|= a0 < b{0}. We obtain vc(x < y) ≥ 1.
Now let a0, a1 ∈M be arbitrary. Assume that there exist b{0}, b{1} ∈M such that
ai < bJ if and only if i ∈ J for (i , J) ∈ {0, 1} × {{0}, {1}}. Then

a0 < b{0} ≤ a1 < b{1} ≤ a0,

a contradiction. Hence, vc(x < y) ≤ 1.
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NIP

Definition
A formula ϕ(x ; y) has the independence property (or is IP) if vc(ϕ) =∞. If ϕ does
not have the independence property, it is called NIP. A complete theory T in which
every formula is NIP is also called NIP.

Examples of NIP theories:
• o-minimal theories
• weakly o-minimal theories
• C-minimal theories
• ...
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Alternation Number

A sequence (ai)i<ω is indiscernible if for every n < ω and any i1 < . . . < in < ω and
j1 < . . . < jn < ω the tuples (ai1 , . . . , ain) and (aj1 , . . . , ajn) have the same type, i.e.
ϕ(ai1 , . . . , ain) holds if and only if ϕ(aj1 , . . . , ajn).

Definition
Let ϕ(x ; y) be a formula. Let X ⊆ ω be the set of all n < ω for which there are an
indiscernible sequence (ai)i<ω and a tuple b such that for any i < n − 1 we have
|= ϕ(ai ; b)↔ ¬ϕ(ai+1; b). The alternation number alt(ϕ) of ϕ is defined as the
maximum of X if it exists, or ∞ otherwise.
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Alternation Number and VC Dimension

Proposition
Let ϕ(x ; y) be a formula. Then alt(ϕ) ≤ 2 vc(ϕ) + 1.

Corollary
(1) ϕ is NIP.
(2) vc(ϕ) <∞.
(3) alt(ϕ) <∞.
(4) For every indiscernible sequence (ai)i<ω and every tuple b the set of indices i < ω

such that |= ϕ(ai ; b) holds is finite or cofinite.
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Further Tools

Proposition
The set of NIP formulas in T is closed under boolean combinations.

Proof.
Let ϕ(x ; y) and ψ(x ; y) be formulas with finite alternation number. By the previous
corollary, it suffices to show that ¬ϕ(x ; y) and ϕ(x ; y) ∧ ψ(x ; y) have finite alternation
number. Indeed, alt(¬ϕ) = alt(ϕ) and alt(ϕ ∧ ψ) ≤ alt(ϕ) + alt(ψ)− 1.

Theorem
Let T be a complete theory. Suppose that every formula of the form ϕ(x ; y) is NIP in
T . Then T is NIP.
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T0-minimality

Definition
Let T0 be a theory in a language L0. A complete theory T ⊇ T0 in a language L ⊇ L0
is said to be T0-minimal if for every L-formula ϕ(x , y1, . . . , ym), any modelM |= T
and any parameters b1, . . . , bm ∈ M, there exist a quantifier-free L0-formula
ψ(x , z1, . . . , zn) and parameters c1, . . . , cn ∈ M such that

M |= ∀x(ϕ(x , b1, . . . , bm)↔ ψ(x , c1, . . . , cn)).

If T0 is the theory of linear orders, then a T0-minimal theory T is called o-minimal.

Example
Trcf, the theory of real closed fields, is Tlo-minimal. E.g.
(R,+, ·, 0, 1, <) |= ∀x (x2 < 2↔ (−

√
2 < x ∧ x <

√
2)).
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O-minimality Implies NIP

Proposition
Let T0 be a theory. Suppose that for any complete theory T ′ ⊇ T0 every quantifier-free
T0-formula of the form ϕ(x ; y) is NIP in T ′. Then every T0-minimal theory T is NIP.

Theorem
Let T be an o-minimal theory. Then T is NIP.

Proof.
Any quantifier-free formula is (equivalent to) a boolean combination of formulas of the
form x < y . Since vc(x < y) = 1, these are NIP.
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Brief Historical Overview

• Vapnik, Chervonenkis, 1971: paper on statistical learning theory introducing
the notion of VC dimensions (for sets rather than formulas)
• Shelah, 1971: paper on model theory introducing the independence property
• Pillay, Steinhorn, 1986: proof that o-minimality implies NIP
• Laskowski, 1992: connecting the notion of VC dimension to the independence
property
• Wilkie, 1996: proof that Ran,exp is o-minimal
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Neurons

Lothar Sebastian Krapp NIP, O-minimality and Neural Networks



NIP O-minimality Neural Networks References

Neurons
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Artificial Neurons

ri : real numbers, input
wi : real numbers, weights∑

wi ri : weighted sum
F : real valued function,

activation function
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Activation Functions

Typical activation functions F :

• characteristic functions on intervals (a,∞)
• piecewise linear functions
• sigmoid function F (t) = 1

1+exp(−t)
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Artificial Neural Network

(10 neurons, 4 layers)
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Artificial Neural Network

X : input space, e.g. (R2 × {0, . . . , 255})12

Y : output space, e.g. {0, 1}
Fi(x ,w): activation functions

The network computes a class of functions X → Y .
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Learning Cycle

1 network is in an initial state h coded by the weights
2 training sample (x , y) ∈ X × Y is chosen
3 h(x) is computed
4 the weights are adjusted depending on h(x) = y or h(x) 6= y (also considering

previous training samples)

Goal: After finitely many training samples the network is in a state h which gives a
good approximation to recognising the pattern.
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Formal Learning

Neural network H: set of all possible functions depending on the weights

Sample space Z = X × Y
Learning algorithm L:

L :
∞⋃

m=1
Zm → H.
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Learning Algorithm

p – probability measure on Z measuring the probability that a sample is chosen as
training sample

erp(h) = p{(x , y) ∈ Z | h(x) 6= y} – error of h ∈ H

optp(H) = infh∈H erp(h) – best approximation in H for given p
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Learning Algorithm
Definition

Let H be a collection of functions X → Y for a given sample space Z = X × Y . A
learning algorithm L is a map

L :
∞⋃

m=1
Zm → H

such that it has the following property:
∀ε, δ ∈ (0, 1) ∃m0 ∈ N ∀m ≥ m0 :
for any probability measure p on Z we have

pm{z ∈ Zm | erp(L(z)) < optp(H) + ε} ≥ 1− δ,

where pm is the product measure on Zm.
H is called learnable if there exists a learning algorithm for H.
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NIP Implies Learnability

Theorem
Let R = (R,+, ·, <, . . .) be an expansion of (R,+, ·, <), X ⊆ Rd a (parametrically)
definable set over R and let H be a collection of activation functions of a neural
network X → {0, 1} (parametrically) definable over R. Suppose that the complete
theory of R is NIP. Then H is learnable.

Since Ran,exp is o-minimal and thus NIP, a set H of Ran,exp-definable activation
functions of a neural network is learnable.
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