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VC Dimension

Throughout this section we fix a language £, a complete L-theory T and a monster
model M of T. We abbreviate M |= ¢ by = ¢.
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VC Dimension

Throughout this section we fix a language £, a complete L-theory T and a monster
model M of T. We abbreviate M = ¢ by = ¢.

Definition

Let ©(x, y) be a formula. The Vapnik—Chervonenkis dimension (VC dimension) of
 is defined as

ve(p(x; y)) =
max{n < w | 3(a;)i<n3(by)scqo...n-1} [ F ¥(a;i by) if and only if i € J]}

if the maximum exists, and co otherwise.
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VC Dimension

Example
Let Ty be the theory of dense linear ordered without endpoints. Consider the formula

o(x; y) given by x < y.
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VC Dimension

Example

Let Ty be the theory of dense linear ordered without endpoints. Consider the formula
o(x; y) given by x < y.

Let ap € M be arbitrary and set by = ag and bygy > ao. Then K ap < by and

= a0 < bggy. We obtain vc(x < y) > 1.
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VC Dimension

Example

Let Ty be the theory of dense linear ordered without endpoints. Consider the formula
o(x; y) given by x < y.

Let ap € M be arbitrary and set by = ag and bygy > ao. Then K ap < by and

= a0 < bggy. We obtain vc(x < y) > 1.

Now let ag, a1 € M be arbitrary. Assume that there exist bygy, by1y € M such that

a; < by if and only if i € J for (i,J) € {0,1} x {{0},{1}}. Then

ag < b{O} <a < b{l} < ao,

a contradiction. Hence, ve(x < y) < 1.
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NIP

Definition
A formula o(x; y) has the independence property (or is IP) if vc(¢) = oo. If ¢ does
not have the independence property, it is called NIP. A complete theory T in which

every formula is NIP is also called NIP.
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NIP

Definition

A formula o(x; y) has the independence property (or is IP) if vc(¢) = oo. If ¢ does
not have the independence property, it is called NIP. A complete theory T in which
every formula is NIP is also called NIP.

Examples of NIP theories:
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NIP

Definition

A formula o(x; y) has the independence property (or is IP) if vc(¢) = oo. If ¢ does
not have the independence property, it is called NIP. A complete theory T in which
every formula is NIP is also called NIP.

Examples of NIP theories:

® o-minimal theories
® weakly o-minimal theories

e C-minimal theories
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Alternation Number

A sequence (a;)i<.w is indiscernible if for every n < w and any i1 < ... < i, < w and
i1 <...<jn<w thetuples (a;,...,a;) and (a;,,...,a,) have the same type, i.e.
¢(aj,---,a;,) holds if and only if ©(a;,...,a; ).

=T
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Alternation Number

A sequence (a;)i<.w is indiscernible if for every n < w and any i1 < ... < i, < w and
J1 < ... < jn <w the tuples (a;,...,a;) and (a

,aj,) have the same type, i.e.
cp(g,-l, ..+, 2;,) holds if and only if ¥(a;,...,a;,)

Jl""

Definition

Let ¢(x;y) be a formula. Let X C w be the set of all n < w for which there are an
indiscernible sequence (a;)i<w and a tuple b such that for any i < n — 1 we have
= ¢(aj; b) < —¢(a;,1; b). The alternation number alt(y) of ¢ is defined as the
maximum of X if it exists, or co otherwise.
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Alternation Number and VC Dimension

Let o(x; y) be a formula. Then alt(y) < 2vc(p) + 1.
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Alternation Number and VC Dimension

Let o(x; y) be a formula. Then alt(y) < 2vc(p) + 1.

Corollary
@ is NIP.
ve(yp) < oo.

alt(p) < oo.

© 666

For every indiscernible sequence (a;)i<. and every tuple b the set of indices i < w
such that = ¢(a;; b) holds is finite or cofinite.
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Further Tools

The set of NIP formulas in T is closed under boolean combinations.
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Further Tools

Proposition

The set of NIP formulas in T is closed under boolean combinations.

Proof.
Let o(x; y) and ¥(x; y) be formulas with finite alternation number.
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Further Tools

Proposition

The set of NIP formulas in T is closed under boolean combinations.

Proof.

Let o(x; y) and ¢(x; y) be formulas with finite alternation number. By the previous

corollary, it suffices to show that —p(x; y) and ¢(x; y) A1(x; y) have finite alternation
number.
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Further Tools

Proposition

The set of NIP formulas in T is closed under boolean combinations.

Proof.

Let o(x; y) and ¢(x; y) be formulas with finite alternation number. By the previous
corollary, it suffices to show that —p(x; y) and ¢(x; y) A1(x; y) have finite alternation
number. Indeed, alt(—¢) = alt(¢) and alt(p A ) < alt(p) + alt(y)) — 1.
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Further Tools

Proposition

The set of NIP formulas in T is closed under boolean combinations.

Proof.

Let o(x; y) and ¥(x; y) be formulas with finite alternation number. By the previous
corollary, it suffices to show that —p(x; y) and ¢(x; y) A1(x; y) have finite alternation
number. Indeed, alt(—¢) = alt(¢) and alt(p A ) < alt(p) + alt(y)) — 1.

Theorem

Let T be a complete theory. Suppose that every formula of the form (x;y) is NIP in
T. Then T is NIP.
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To-minimality

Definition

Let Ty be a theory in a language L. A complete theory T O T in a language £ O Ly
is said to be To-minimal if for every L-formula p(x,y1,...,ym), any model M = T
and any parameters by, ..., by, € M, there exist a quantifier-free Lo-formula
¥(x,z1,...,2,) and parameters ci, ..., c, € M such that

M E Vx(p(x, b1, ..., bm) <> (x,c1,...,¢n)).

If Tp is the theory of linear orders, then a Tg-minimal theory T is called o-minimal.
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To-minimality

Definition

Let Ty be a theory in a language L. A complete theory T O T in a language £ O Ly
is said to be To-minimal if for every L-formula p(x,y1,...,ym), any model M = T
and any parameters by, ..., by, € M, there exist a quantifier-free Lo-formula
¥(x,z1,...,2,) and parameters ci, ..., c, € M such that

M EVx(p(x, b1, ..., bm) <> ¥(x,c1,...,¢n)).
If Tp is the theory of linear orders, then a Tg-minimal theory T is called o-minimal.

Example
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To-minimality

Definition

Let Ty be a theory in a language L. A complete theory T O T in a language £ O Ly
is said to be To-minimal if for every L-formula p(x,y1,...,ym), any model M = T
and any parameters by, ..., by, € M, there exist a quantifier-free Lo-formula
¥(x,z1,...,2,) and parameters ci, ..., c, € M such that

M EVx(p(x, b1, ..., bm) <> ¥(x,c1,...,¢n)).
If Tp is the theory of linear orders, then a Tg-minimal theory T is called o-minimal.

Example
T.cf, the theory of real closed fields, is Ti,-minimal. E.g.
(R, +,-,0,1,<) EVx (x2 <2 & (—V2 < x Ax < V?2)).
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O-minimality Implies NIP

Let Ty be a theory. Suppose that for any complete theory T’ O Ty every quantifier-free
To-formula of the form o(x;y) is NIP in T'. Then every To-minimal theory T is NIP.
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O-minimality Implies NIP

Let Ty be a theory. Suppose that for any complete theory T’ O Ty every quantifier-free
To-formula of the form o(x;y) is NIP in T'. Then every To-minimal theory T is NIP.

Let 7 be an o-minimal theory. Then T is NIP.
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O-minimality Implies NIP

Let Ty be a theory. Suppose that for any complete theory T’ O Ty every quantifier-free
To-formula of the form o(x;y) is NIP in T'. Then every To-minimal theory T is NIP.

Theorem
Let 7 be an o-minimal theory. Then T is NIP.

Proof.
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O-minimality Implies NIP

Proposition
Let Ty be a theory. Suppose that for any complete theory T’ O Ty every quantifier-free
To-formula of the form o(x;y) is NIP in T'. Then every To-minimal theory T is NIP.

Theorem
Let 7 be an o-minimal theory. Then T is NIP.

Proof.
Any quantifier-free formula is (equivalent to) a boolean combination of formulas of the

form x < y.
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O-minimality Implies NIP

Proposition
Let Ty be a theory. Suppose that for any complete theory T’ O Ty every quantifier-free
To-formula of the form o(x;y) is NIP in T'. Then every To-minimal theory T is NIP.

Theorem
Let 7 be an o-minimal theory. Then T is NIP.

Proof.
Any quantifier-free formula is (equivalent to) a boolean combination of formulas of the

form x < y. Since vc(x < y) = 1, these are NIP.
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Brief Historical Overview

® Vapnik, Chervonenkis, 1971: paper on statistical learning theory introducing
the notion of VC dimensions (for sets rather than formulas)
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Brief Historical Overview

® Vapnik, Chervonenkis, 1971: paper on statistical learning theory introducing
the notion of VC dimensions (for sets rather than formulas)

® Shelah, 1971: paper on model theory introducing the independence property
e Pillay, Steinhorn, 1986: proof that o-minimality implies NIP
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Brief Historical Overview

Vapnik, Chervonenkis, 1971: paper on statistical learning theory introducing
the notion of VC dimensions (for sets rather than formulas)

Shelah, 1971: paper on model theory introducing the independence property
Pillay, Steinhorn, 1986: proof that o-minimality implies NIP

Laskowski, 1992: connecting the notion of VC dimension to the independence
property
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Brief Historical Overview

Vapnik, Chervonenkis, 1971: paper on statistical learning theory introducing
the notion of VC dimensions (for sets rather than formulas)

Shelah, 1971: paper on model theory introducing the independence property
Pillay, Steinhorn, 1986: proof that o-minimality implies NIP

Laskowski, 1992: connecting the notion of VC dimension to the independence
property
Wilkie, 1996: proof that Ran exp is 0-minimal
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Neurons

synapse
axXO0I

dendrites
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Artificial Neurons

F F(3- raw;)

Lothar Sebastian Krapp



Artificial Neurons

ri: real numbers, input

F F(3- raw;)
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Artificial Neurons

ri: real numbers, input
w;: real numbers, weights

F F(3- raw;)
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Artificial Neurons

ri: real numbers, input
w;: real numbers, weights
> wir;: weighted sum

F F(3- raw;)
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Artificial Neurons

F F(3- raw;)

Lothar Sebastian Krapp

ri: real numbers, input

w;: real numbers, weights

> wir;: weighted sum

F: real valued function,
activation function



Activation Functions

Typical activation functions F:
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Activation Functions

Typical activation functions F:

® characteristic functions on intervals (a, c0)
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Activation Functions

Typical activation functions F:
® characteristic functions on intervals (a, c0)

® piecewise linear functions
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Activation Functions

Typical activation functions F:
e characteristic functions on intervals (a, 00)

® piecewise linear functions

1

® sigmoid function F(t) = TTow(CD)

Lothar Sebastian Krapp



Artificial Neural Network

Lothar Sebastian Krapp



Artificial Neural Network

Im‘ »
=) ()
() )

)

(10 neurons, 4 layers)




Artificial Neural Network

X: input space, e.g. (R? x {0,...,255})%?
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Artificial Neural Network

X: input space, e.g. (R? x {0,...,255})%?
Y': output space, e.g. {0,1}
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Artificial Neural Network

X: input space, e.g. (R? x {0,...,255})12
Y': output space, e.g. {0,1}
Fi(x, w): activation functions
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Artificial Neural Network

X: input space, e.g. (R? x {0,...,255})12
Y': output space, e.g. {0,1}
Fi(x, w): activation functions

The network computes a class of functions X — Y.
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Learning Cycle

© network is in an initial state h coded by the weights
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Learning Cycle

© network is in an initial state h coded by the weights
@ training sample (x,y) € X x Y is chosen
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© network is in an initial state h coded by the weights
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Learning Cycle

© network is in an initial state h coded by the weights
@ training sample (x,y) € X x Y is chosen
@ h(x) is computed

Q the weights are adjusted depending on h(x) =y or h(x) # y (also considering
previous training samples)
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Learning Cycle

© network is in an initial state h coded by the weights

@ training sample (x,y) € X x Y is chosen

@ h(x) is computed

Q the weights are adjusted depending on h(x) =y or h(x) # y (also considering

previous training samples)

Goal: After finitely many training samples the network is in a state h which gives a
good approximation to recognising the pattern.
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Formal Learning

Neural network H: set of all possible functions depending on the weights
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Formal Learning

Neural network H: set of all possible functions depending on the weights
Sample space Z=X x Y
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Formal Learning

Neural network H: set of all possible functions depending on the weights
Sample space Z=X x Y
Learning algorithm L:
o0
L:|Jz"—H.

m=1
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Learning Algorithm

p — probability measure on Z measuring the probability that a sample is chosen as
training sample
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Learning Algorithm

p — probability measure on Z measuring the probability that a sample is chosen as
training sample

erp(h) = p{(x,y) € Z | h(x) # y} —errorof he H
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Learning Algorithm

p — probability measure on Z measuring the probability that a sample is chosen as
training sample

erp(h) = p{(x,y) € Z | h(x) # y} —errorof he H

opt,(H) = infpep erp(h) — best approximation in H for given p
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Learning Algorithm

Definition
Let H be a collection of functions X — Y for a given sample space Z = X x Y. A
learning algorithm L is a map

i sz—m

m=1

such that it has the following property:
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Learning Algorithm

Definition
Let H be a collection of functions X — Y for a given sample space Z = X x Y. A
learning algorithm L is a map

i sz—m

m=1

such that it has the following property:
Ve,d € (0,1) 3mg e NVm > my :
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Learning Algorithm

Definition
Let H be a collection of functions X — Y for a given sample space Z = X x Y. A
learning algorithm L is a map

L:|Jz"—H
m=1

such that it has the following property:
Ve,d € (0,1) 3mp € NVm > myg :
for any probability measure p on Z we have

p™{z € Z™ | erp(L(2)) < opt,(H) +e} > 13,

where p™ is the product measure on Z.
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Learning Algorithm

Definition
Let H be a collection of functions X — Y for a given sample space Z = X x Y. A
learning algorithm L is a map

L:|Jz"—H
m=1
such that it has the following property:
Ve,d € (0,1) 3mp € NVm > myg :
for any probability measure p on Z we have

p™{z € Z™ | erp(L(2)) < opt,(H) +e} > 13,

where p™ is the product measure on Z.
H is called learnable if there exists a learning algorithm for H.
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NIP Implies Learnability

Theorem

Let R = (R, +,-,<,...) be an expansion of (R, +,-, <), X C R a (parametrically)
definable set over R and let H be a collection of activation functions of a neural
network X — {0,1} (parametrically) definable over R. Suppose that the complete
theory of R is NIP. Then H is learnable.
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NIP Implies Learnability

Theorem

Let R = (R, +,-,<,...) be an expansion of (R, +,-, <), X C R a (parametrically)
definable set over R and let H be a collection of activation functions of a neural
network X — {0,1} (parametrically) definable over R. Suppose that the complete
theory of R is NIP. Then H is learnable.

Since Ran exp is 0-minimal and thus NIP, a set H of R, exp-definable activation
functions of a neural network is learnable.

Lothar Sebastian Krapp



(1]

2]

(3]

[4]

(5]

References

A. Ya. CHERVONENKIS and V. N. VAPNIK, ‘The uniform convergence of frequencies of the
appearance of events to their probabilities’, Teor. Verojatnost. i Primenen. 16 (1971)
264-279 (Russian), Theor. Probability Appl. 16 (1971) 264-280 (English).

M. C. LAskOwsKI, ‘Vapnik—Chervonenkis classes of definable sets’, J. London Math. Soc.
(2) 45 (1992) 377-384.

A. PiLLAY and C. STEINHORN, ‘Definable sets in ordered structures’, |, Trans. Amer.
Math. Soc. 295 (1986) 565-592.

S. SHELAH, ‘Stability, the f.c.p., and superstability; model theoretic properties of formulas in
first order theory’, Ann. Math. Logic 3 (1971) 271-362.

Graphics from:

M. TRESSL, ‘Introduction to o-minimal structures and an application to neural network
learning’, Preprint, 2010.

Lothar Sebastian Krapp



	NIP
	O-minimality
	Neural Networks
	References

