REAL ALGEBRAIC GEOMETRY LECTURE NOTES (05: 23/04/15)

SALMA KUHLMANN

Contents

1. Valuation basis

1. Valuation basis

Definition 1.1. $\mathcal{B} \subseteq V \backslash\{0\}$ is a Q-valuation basis of (V, v) if
(1) \mathcal{B} is a Q-linear basis for V,
(2) \mathcal{B} is Q-valuation independent.

Remark 1.2. \mathcal{B} is a Q-valuation basis $\Rightarrow \mathcal{B}$ is maximal valuation independent.
(This is because valuation independence \Rightarrow linear independence).

Warning 1.3.

(i) a maximal valuation independent set needs not to be a valuation basis.
Example: $\mathrm{H}_{\mathbb{N}} \mathbb{Q}$ is a \mathbb{Q}-vector space, with $v_{\min }$ valuation. Consider

$$
\mathcal{B}=\{(1,0, \ldots),(0,1, \ldots), \ldots\} \subseteq \mathrm{H}_{\mathbb{N}} \mathbb{Q} \backslash\{0\}
$$

Then $\forall \gamma \in \mathbb{N}: \mathcal{B}_{\gamma}=\{1\}$, which is a \mathbb{Q}-basis of $B(\gamma)$. Hence, \mathcal{B} is maximal valuation independent. However, note that \mathcal{B} is not a \mathbb{Q} linear basis of $\mathrm{H}_{\mathbb{N}} \mathbb{Q}$.
(ii) a valued vector space needs not to admit a valuation basis.

Example 1.4. $\left(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\text {min }}\right)$ admits a valuation basis.
Proof. Let \mathcal{B}_{γ} be a Q-basis of $B(\gamma)$ for all $\gamma \in \Gamma$ and consider

$$
\mathcal{B}:=\bigcup_{\gamma \in \Gamma}\left\{b \chi_{\gamma} ; b \in \mathcal{B}_{\gamma}\right\}
$$

where $\forall \gamma \in \Gamma$

$$
\begin{gathered}
\chi_{\gamma}: \Gamma \longrightarrow Q \\
\chi_{\gamma}\left(\gamma^{\prime}\right)= \begin{cases}1 & \text { if } \gamma=\gamma^{\prime} \\
0 & \text { if } \gamma \neq \gamma^{\prime}\end{cases}
\end{gathered}
$$

Corollary 1.5. Let (V, v) be a valued Q-vector space with skeleton $S(V)=$ $[\Gamma,\{B(\gamma): \gamma \in \Gamma\}]$. Then (V, v) admits a valuation basis if and only if

$$
(V, v) \cong\left(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min }\right)
$$

Proof.
(\Leftarrow) ÜA.
(\Rightarrow) Let $\mathcal{B}:=\left\{b_{i}: i \in I\right\}$ be a valuation basis for (V, v). Then \mathcal{B} is maximal valuation independent. For every $b_{i} \in \mathcal{B}$ with $v\left(b_{i}\right)=\gamma$ define

$$
h\left(b_{i}\right)=\pi\left(\gamma, b_{i}\right) \chi_{\gamma} \in \bigsqcup_{\gamma \in \Gamma} B(\gamma)
$$

and then extend h to all of V by linearity, i.e. for $x \in V$ such that $x=\sum_{b_{i} \in \mathcal{B}} q_{b_{i}} b_{i}$ define

$$
h(x):=\sum_{b_{i} \in \mathcal{B}} q_{b_{i}} h\left(b_{i}\right) .
$$

Verify that h is valuation preserving, i.e. verify that

$$
v_{\min }(h(x))=v(x)(=\operatorname{id}(v(x))) \quad \forall x \in V
$$

First consider the case $x=b_{i}$. Then it holds by construction $v\left(b_{i}\right)=v_{\text {min }}\left(h\left(b_{i}\right)\right)$.

For arbitrary x we have $h(x)=\sum q_{b_{i}} h\left(b_{i}\right)$, and therefore

$$
\begin{aligned}
v(x) & =\min \left\{v\left(b_{i}\right): b_{i} \in \mathcal{B}\right\} \\
& =\min \left\{v_{\min }\left(h\left(b_{i}\right)\right): b_{i} \in \mathcal{B}\right\} \\
& =v_{\min }(h(x))
\end{aligned}
$$

Corollary 1.6. Let (V, v) be a valued Q-vector space with skeleton $S(V)=$ $[\Gamma,\{B(\gamma): \gamma \in \Gamma\}]$. Then

$$
\left(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min }\right) \hookrightarrow(V, v)
$$

i.e. there exists a valued subspace $\left(V_{0}, v_{0}\right)$ of (V, v) such that $\left(V_{0}, v_{0}\right) \subseteq(V, v)$ is immediate and

$$
\left(V_{0}, v_{0}\right) \cong\left(\bigsqcup B\left(\gamma, v_{\min }\right)\right)
$$

Proof. By Zorn's lemma, let $\mathcal{B} \subset V \backslash\{0\}$ be maximal valuation independent. Set

$$
V_{0}:=\langle\mathcal{B}\rangle_{Q}
$$

Then \mathcal{B} is a valuation basis of V_{0} and the extension $V_{0} \subseteq V$ is immediate by maximality. By definition $S\left(V_{0}\right)=[\Gamma,\{B(\gamma): \gamma \in \Gamma\}]$. So ($V_{0}, v_{\mid V_{0}}$) admits a valuation basis and has skeleton $S\left(V_{0}\right)=[\Gamma,\{B(\gamma): \gamma \in \Gamma\}]$. By the previous corollary $\left(V_{0}, v_{\mid V_{0}}\right) \cong\left(\bigsqcup B(\gamma), v_{\min }\right)$.

