REAL ALGEBRAIC GEOMETRY LECTURE NOTES (05: 23/04/15)

SALMA KUHLMANN

$\operatorname{Contents}$

1. Valuation basis

1

1. VALUATION BASIS

Definition 1.1. $\mathcal{B} \subseteq V \setminus \{0\}$ is a *Q*-valuation basis of (V, v) if

- (1) \mathcal{B} is a Q-linear basis for V,
- (2) \mathcal{B} is *Q*-valuation independent.

Remark 1.2. \mathcal{B} is a *Q*-valuation basis $\Rightarrow \mathcal{B}$ is maximal valuation independent.

(This is because valuation independence \Rightarrow linear independence).

Warning 1.3.

(i) a maximal valuation independent set needs not to be a valuation basis.

Example: $H_{\mathbb{N}}\mathbb{Q}$ is a \mathbb{Q} -vector space, with v_{\min} valuation. Consider

 $\mathcal{B} = \{(1,0,\ldots),(0,1,\ldots),\ldots\} \subseteq H_{\mathbb{N}} \mathbb{Q} \setminus \{0\}.$

Then $\forall \gamma \in \mathbb{N} : \mathcal{B}_{\gamma} = \{1\}$, which is a \mathbb{Q} -basis of $B(\gamma)$. Hence, \mathcal{B} is maximal valuation independent. However, note that \mathcal{B} is not a \mathbb{Q} -linear basis of $H_{\mathbb{N}} \mathbb{Q}$.

(ii) a valued vector space needs not to admit a valuation basis.

Example 1.4. $(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min})$ admits a valuation basis. *Proof.* Let \mathcal{B}_{γ} be a *Q*-basis of $B(\gamma)$ for all $\gamma \in \Gamma$ and consider

$$\mathcal{B} := \bigcup_{\gamma \in \Gamma} \{ b \chi_{\gamma}; \ b \in \mathcal{B}_{\gamma} \},$$

where $\forall \gamma \in \Gamma$

$$\chi_{\gamma} \colon \Gamma \longrightarrow Q$$
$$\chi_{\gamma}(\gamma') = \begin{cases} 1 & \text{if } \gamma = \gamma' \\ 0 & \text{if } \gamma \neq \gamma' \end{cases}$$

Corollary 1.5. Let (V, v) be a valued Q-vector space with skeleton $S(V) = [\Gamma, \{B(\gamma) : \gamma \in \Gamma\}]$. Then (V, v) admits a valuation basis if and only if

$$(V, v) \cong (\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min}).$$

Proof.

(⇐) ÜA.

(⇒) Let $\mathcal{B} := \{b_i : i \in I\}$ be a valuation basis for (V, v). Then \mathcal{B} is maximal valuation independent. For every $b_i \in \mathcal{B}$ with $v(b_i) = \gamma$ define

$$h(b_i) = \pi(\gamma, b_i)\chi_{\gamma} \in \bigsqcup_{\gamma \in \Gamma} B(\gamma)$$

and then extend h to all of V by linearity, i.e. for $x \in V$ such that $x = \sum_{b_i \in \mathcal{B}} q_{b_i} b_i$ define

$$h(x) := \sum_{b_i \in \mathcal{B}} q_{b_i} h(b_i).$$

Verify that h is valuation preserving, i.e. verify that

 $v_{\min}(h(x)) = v(x) \ (= \operatorname{id}(v(x))) \quad \forall x \in V$

First consider the case $x = b_i$. Then it holds by construction $v(b_i) = v_{\min}(h(b_i))$.

For arbitrary x we have $h(x) = \sum q_{b_i} h(b_i)$, and therefore

$$v(x) = \min\{v(b_i) : b_i \in \mathcal{B}\}$$

= min{ $v_{\min}(h(b_i)) : b_i \in \mathcal{B}\}$
= $v_{\min}(h(x)).$

Corollary 1.6. Let (V, v) be a valued Q-vector space with skeleton $S(V) = [\Gamma, \{B(\gamma) : \gamma \in \Gamma\}]$. Then

$$(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min}) \hookrightarrow (V, v),$$

i.e. there exists a valued subspace (V_0, v_0) of (V, v) such that $(V_0, v_0) \subseteq (V, v)$ is immediate and

$$(V_0, v_0) \cong (\bigsqcup B(\gamma, v_{\min})).$$

Proof. By Zorn's lemma, let $\mathcal{B} \subset V \setminus \{0\}$ be maximal valuation independent. Set

$$V_0 := \langle \mathcal{B} \rangle_Q.$$

Then \mathcal{B} is a valuation basis of V_0 and the extension $V_0 \subseteq V$ is immediate by maximality. By definition $S(V_0) = [\Gamma, \{B(\gamma) : \gamma \in \Gamma\}]$. So $(V_0, v_{|V_0})$ admits a valuation basis and has skeleton $S(V_0) = [\Gamma, \{B(\gamma) : \gamma \in \Gamma\}]$. By the previous corollary $(V_0, v_{|V_0}) \cong (\bigsqcup B(\gamma), v_{\min})$.