REAL ALGEBRAIC GEOMETRY LECTURE NOTES (06: 27/04/15 - CORRECTED ON 06/05/2019)

SALMA KUHLMANN

$\operatorname{Contents}$

1.	Introduction	1
2.	Pseudo-convergence and maximality	1
3.	Pseudo-limits	3
4.	Cofinality	4

1. INTRODUCTION

Our aim for this and next lecture is to complete the proof of Hahn's embedding Theorem:

Let (V, v) be a Q-valued vector space with $S(V) = [\Gamma, B(\gamma)]$. Let $\{x_i : i \in I\} \subset V$ be maximal valuation independent and

$$h: V_0 = (\langle \{x_i : i \in I\} \rangle, v) \xrightarrow{\sim} (\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min}).$$

Then h extends to a valuation preserving embedding (i.e. an isomorphism onto a valued subspace)

$$\tilde{h}: (V, v) \hookrightarrow (\operatorname{H}_{\gamma \in \Gamma} B(\gamma), v_{\min}).$$

The picture is the following:

$$(V, v) \stackrel{h}{\longleftrightarrow} (H_{\gamma \in \Gamma} B(\gamma), v_{\min})$$

immediate $|$ immediate
 $(V_0, v) \stackrel{h}{\longrightarrow} (\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min})$

2. Pseudo-convergence and maximality

Definition 2.1. A valued *Q*-vector space (V, v) is said to be **maximally** valued if it admits no proper immediate extension.

Definition 2.2. Let $S = \{a_{\rho} : \rho \in \lambda\} \subset V$ for some limit ordinal λ . Then S is said to be **pseudo-convergent** (or **pseudo-Cauchy**) if for every $\rho < \sigma < \tau$ we have

$$v(a_{\sigma} - a_{\rho}) < v(a_{\tau} - a_{\sigma}).$$

Example 2.3.

(a) Let $V = (\mathcal{H}_{\mathbb{N}_0} \mathbb{R}, v_{\min})$, where $\mathbb{N}_0 = \{0, 1, 2, ...\}$. An element $s \in V$ can be viewed as a function $s \colon \mathbb{N}_0 \to \mathbb{R}$. Consider

$$a_0 = (1, 0, 0, 0, 0...)$$

$$a_1 = (1, 1, 0, 0, 0...)$$

$$a_2 = (1, 1, 1, 0, 0...)$$

:

The sequence $\{a_n : n \in \mathbb{N}_0\} \subset V$ is pseudo-Cauchy.

(b) Take (V, v) as above and $s \in V$ with

$$\operatorname{support}(s) = \mathbb{N}_0,$$

i.e. $s_i := s(i) \neq 0 \ \forall i \in \mathbb{N}_0$. Define the sequence

$$b_0 = (s_0, 0, 0, 0, 0, \dots)$$

$$b_1 = (s_0, s_1, 0, 0, 0, \dots)$$

$$b_2 = (s_0, s_1, s_2, 0, 0, \dots)$$

:

For every $l < m < n \in \mathbb{N}_0$, we have

$$l + 1 = v_{\min}(b_m - b_l) < v_{\min}(b_n - b_m) = m + 1.$$

Therefore $\{b_n : n \in \mathbb{N}_0\} \subset V$ is pseudo-Cauchy.

Lemma 2.4. If $S = \{a_{\rho}\}_{\rho \in \lambda}$ is pseudo-convergent then

- (i) either $v(a_{\rho}) < v(a_{\sigma})$ for all $\rho < \sigma \in \lambda$,
- (ii) or $\exists \rho_0 \in \lambda$ such that $v(a_{\rho}) = v(a_{\sigma}) \ \forall \rho, \sigma \ge \rho_0$.

Proof. Assume (i) does not hold, i.e. $v(a_{\rho}) \ge v(a_{\sigma})$ for some $\rho < \sigma \in \lambda$. Then we claim that

$$v(a_{\tau}) = v(a_{\sigma}) \qquad \forall \tau > \sigma.$$

Otherwise, $v(a_{\tau} - a_{\sigma}) = \min\{v(a_{\tau}), v(a_{\sigma})\} \leq v(a_{\sigma})$.

But $v(a_{\sigma} - a_{\rho}) \ge v(a_{\sigma})$, contradicting pseudo-convergence for $\rho < \sigma < \tau$.

Notation 2.5. In case (ii) define

Ult
$$S := v(a_{\rho_0}) = v(a_{\rho}) \qquad \forall \rho \ge \rho_0.$$

Lemma 2.6. If $\{a_{\rho}\}_{\rho \in \lambda}$ is pseudo-convergent, then for all $\rho < \sigma \in \lambda$ we have

$$v(a_{\sigma} - a_{\rho}) = v(a_{\rho+1} - a_{\rho}).$$

Proof. We may assume $\sigma > \rho + 1$ (so $\rho < \rho + 1 < \sigma$). From

$$v(a_{\rho+1} - a_{\rho}) < v(a_{\sigma} - a_{\rho+1})$$

and the identity

$$a_{\sigma} - a_{\rho} = (a_{\sigma} - a_{\rho+1}) + (a_{\rho+1} - a_{\rho}),$$

we deduce that

$$v(a_{\sigma} - a_{\rho}) = \min\{v(a_{\sigma} - a_{\rho+1}), v(a_{\rho+1} - a_{\rho})\}\$$

= $v(a_{\rho+1} - a_{\rho}).$

Notation 2.7.

$$\gamma_{\rho} := v(a_{\rho+1} - a_{\rho})$$
$$= v(a_{\sigma} - a_{\rho}) \qquad \forall \sigma > \rho.$$

Remark 2.8. Since $\rho < \rho + 1 < \rho + 2$, we have $\gamma_{\rho} < \gamma_{\rho+1}$ for all $\rho \in \lambda$.

3. Pseudo-limits

Definition 3.1. Let $S = \{a_{\rho}\}_{\rho \in \lambda}$ be a pseudo-convergent set. We say that $x \in V$ is a **pseudo-limit** of S if

$$v(x - a_{\rho}) = \gamma_{\rho}$$
 for all $\rho \in \lambda$.

Remark 3.2.

(i) If $v(a_{\rho}) < v(a_{\sigma})$ for $\rho < \sigma$, then x = 0 is a pseudo-limit.

(*ii*) If 0 is not a pseudo-limit and x is a pseudo-limit, then v(x) = Ult S.

Example 3.3.

(a) In Example 2.3(a), the constant function 1:

$$a = (1, 1, \dots)$$

is a pseudo-limit of the sequence $\{a_n\}_{n \in \mathbb{N}_0}$.

SALMA KUHLMANN

(b) In Example 2.3(b), s is a pseudo-limit of $\{b_n\}_{n \in \mathbb{N}_0}$.

Definition 3.4. (V, v) is **pseudo-complete** if every pseudo-convergent sequence in V has a pseudo-limit in V.

We will analyse the set of pseudo-limits of a given pseudo-Cauchy sequence (this set can be empty, a singleton, or infinite).

Definition 3.5. Let $S = \{a_{\rho}\}_{\rho \in \lambda}$ be a pseudo-convergent set. The **breadth** (*Breite*) B of S is defined to be the following subset of V:

$$B = B(S) := \{ y \in V : v(y) > \gamma_{\rho} \ \forall \rho \in \lambda \}.$$

Lemma 3.6. Let $S = \{a_{\rho}\}_{\rho \in \lambda}$ be pseudo-convergent with breadth B and let $x \in V$ be a pseudo-limit of S. Then an element of V is a pseudo-limit of S if and only if it is of the form x + y with $y \in B$.

Proof.

4

 (\Rightarrow) Let z be another pseudo-limit of S. It follows from

$$x - z = (x - a_{\rho}) - (z - a_{\rho})$$

that

$$v(x-z) \ge \min\{v(x-a_{\rho}), v(z-a_{\rho})\} = \gamma_{\rho} \qquad \forall \rho \in \lambda.$$

Since γ_{ρ} is strictly increasing, it follows $v(x-z) > \gamma_{\rho}$ for all $\rho \in \lambda$. So $x - z \in B$ is as required.

(<) If $y \in B$ then $v(y) > \gamma_{\rho} = v(x - a_{\rho})$ for all $\rho \in \lambda$. Then

$$v((x+y) - a_{\rho}) = v((x-a_{\rho}) + y) = \min\{v(x-a_{\rho}), v(y)\} = \gamma_{\rho} \qquad \forall \rho \in \lambda.$$

4. Cofinality

Definition 4.1. Let Γ be a totally ordered set. A subset $A \subset \Gamma$ is cofinal in Γ if

$$\forall \gamma \in \Gamma \ \exists a \in A \text{ with } \gamma \leq a.$$

Example 4.2. If $\Gamma = [0, 1] \subset \mathbb{R}$, then $A = \{1\}$ is cofinal in Γ .

Lemma 4.3. Let $\emptyset \neq \Gamma$ be a totally ordered set. Then there is a well-ordered cofinal subset $A \subset \Gamma$. Moreover if Γ has no last element, then A has also no last element, i.e. the order type of A is a limit ordinal.

Remark 4.4. Note that if $\{a_{\rho}\}_{\rho \in \lambda}$ is pseudo-Cauchy in $(V, v), x \in V$ is a pseudo-limit and $\{\gamma_{\rho}\}_{\rho \in \lambda}$ is cofinal in $\Gamma = v(V)$, then it follows by Lemma 3.6 that the limit is unique. This is because if $\{\gamma_{\rho}\}_{\rho \in \lambda}$ is cofinal in Γ , then $B(S) = \{0\}$.

Warning: $\{\gamma_{\rho}\}_{\rho \in \lambda}$ is cofinal in $\Gamma \neq S$ has no limit.