REAL ALGEBRAIC GEOMETRY LECTURE NOTES (09: 07/05/15 - CORRECTED ON 16/05/19)

SALMA KUHLMANN

Contents

1. Ordered abelian groups 1
2. Archimedean groups 2
3. Archimedean equivalence 3

1. Ordered abelian groups

Definition 1.1. $(G,+, 0,<)$ is a (totally) ordered abelian group if $(G,+, 0)$ is an abelian group and $<$ a total order on G, such that for all $a, b, c \in G$

$$
a \leqslant b \Rightarrow a+c \leqslant b+c \quad(*)
$$

Definition 1.2. A subgroup C of an ordered abelian group G is convex if $\forall c_{1}, c_{2} \in C$ and $\forall x \in G$

$$
c_{1}<x<c_{2} \Rightarrow x \in C
$$

Note that because of (*) this is equivalent to requiring $\forall c \in C$ and $\forall x \in G$

$$
0<x<c \Rightarrow x \in C .
$$

Example 1.3. $C=\{0\}$ and $C=G$ are convex subgroups.
Lemma 1.4. Let G be an ordered abelian group and C a convex subgroup of G. Then
(i) G / C is an ordered abelian group by defining $g_{1}+C \leqslant g_{2}+C$ if $g_{1} \leqslant g_{2}$.
(ii) There is a bijective correspondence between convex subgroups $C \subseteq$ $C^{\prime} \subseteq G$ and convex subgroups of G / C.
(iii) In particular, if D and C are convex subgroups of G such that $D \subset C$ and there are no further subgroups between D and C, then C / D has no non-trivial convex subgroups.
(iv) If an ordered abelian group has only the trivial convex subgroups, then it is an Archimedean group.

Definition 1.5. Let G be an ordered abelian group, $x \in G, x \neq 0$.
We define:

$$
\begin{aligned}
C_{x} & :=\bigcap\{C: C \text { is a convex subgroup of } G \text { and } x \in C\} \\
D_{x} & :=\bigcup\{D: D \text { is a convex subgroup of } G \text { and } x \notin D\}
\end{aligned}
$$

A convex subgroup C of G is said to be principal if there is some $x \in G$ such that $C=C_{x}$.

Lemma 1.6.

(i) C_{x} and D_{x} are convex subgroups of G.
(ii) $D_{x} \subsetneq C_{x}$.
(iii) D_{x} is the largest proper convex subgroup of C_{x}, i.e. if C is a convex subgroup such that

$$
\begin{aligned}
& \qquad D_{x} \subseteq C \subseteq C_{x} \\
& \text { then } C=D_{x} \text { or } C=C_{x}
\end{aligned}
$$

(iv) It follows that the ordered abelian group C_{x} / D_{x} has no non-trivial proper convex subgroup.

2. Archimedean groups

Definition 2.1. Let $(G,+, 0,<)$ be an ordered abelian group. We say that G is Archimedean if for all non-zero $x, y \in G$:

$$
\exists n \in \mathbb{N}: \quad n|x|>|y| \text { and } n|y|>|x|
$$

where for every $g \in G,|g|:=\max \{g,-g\}$.

Proposition 2.2. (Hölder) Every Archimedean group is isomorphic to a subgroup of $(\mathbb{R},+, 0,<)$.

Proposition 2.3. G is Archimedean if and only if G has no non-trivial proper convex subgroup.

Therefore if G is an ordered group and $x \in G$ with $x \neq 0$, the quotient C_{x} / D_{x} is Archimedean (by 2.3) and can be embedded in ($\mathbb{R},+, 0,<$) (by 2.2).

Definition 2.4. Let G be an ordered group, $x \in G, x \neq 0$. We say that

$$
B_{x}:=C_{x} / D_{x}
$$

is the Archimedean component associated to x.

3. Archimedean equivalence

Definition 3.1. An abelian group G is divisible if for every $x \in G$ and for every $n \in \mathbb{N}$ there is some $y \in G$ such that $x=n y$.

Remark 3.2. Any ordered divisible abelian group G is an ordered \mathbb{Q}-vector space and G can be viewed as a valued \mathbb{Q}-vector space in a natural way.

Definition 3.3. (Archimedean equivalence) Let G be an ordered abelian group. For every $0 \neq x, y \in G$ we define

$$
\begin{array}{rlll}
x \sim^{+} y & : \Leftrightarrow \exists n \in \mathbb{N} & n|x| \geqslant|y| \text { and } n|y| \geqslant|x| . \\
x \ll^{+} y & : \Leftrightarrow \forall n \in \mathbb{N} & n|x|<|y| .
\end{array}
$$

Proposition 3.4.

(1) \sim^{+}is an equivalence relation.
(2) \sim^{+}is compatible with \ll^{+}:

$$
\begin{array}{lllll}
x \ll^{+} y & \text { and } & x \sim^{+} z & \Rightarrow & z \ll^{+} y, \\
x \ll^{+} y & \text { and } & y \sim^{+} z & \Rightarrow & x \ll^{+} z .
\end{array}
$$

Because of the last proposition we can define a linear order $<_{\Gamma}$ on $\Gamma:=$ G / \sim^{+}, the set of equivalence classes $\{[x]: x \in G\}$, as follows:

$$
\forall x, y \in G \backslash\{0\}:[y]<\Gamma[x] \quad \Leftrightarrow \quad x \ll^{+} y \quad(\text { and } \infty>\Gamma)
$$

(convention: $[0]=\infty$)

Proposition 3.5.

(1) Γ is a totally ordered set under $<_{\Gamma}$.
(2) The map

$$
\begin{aligned}
& v: G \longrightarrow \Gamma \cup\{\infty\} \\
& 0 \mapsto \infty \\
& x \mapsto \quad[x] \quad(\text { if } x \neq 0)
\end{aligned}
$$

is a valuation on G as a \mathbb{Z}-module, called the natural valuation:
For every $x, y \in G$:
$-v(x)=\infty \quad$ iff $\quad x=0$,

- $v(n x)=v(x) \quad \forall n \in \mathbb{Z}, n \neq 0$,
- $v(x+y) \geqslant \min \{v(x), v(y)\}$.
(3) if $x \in G, x \neq 0, v(x)=\gamma$, then

$$
\begin{aligned}
G^{\gamma} & :=\{a \in G: v(a) \geqslant \gamma\}=C_{x} . \\
G_{\gamma} & :=\{a \in G: v(a)>\gamma\}=D_{x} .
\end{aligned}
$$

So

$$
B_{x}=C_{x} / D_{x}=G^{\gamma} / G_{\gamma}=B(\gamma)
$$

is the Archimedean component associated to γ. By Hölder's Theorem, the homogeneous components $B(\gamma)$ are all (isomorphic to) subgroups of $(\mathbb{R},+, 0,<)$.

Example 3.6. Let $[\Gamma,\{B(\gamma): \gamma \in \Gamma\}]$ be an ordered family of Archimedean groups. Consider $\bigsqcup_{\gamma \in \Gamma} B(\gamma)$ endowed with the lexicographic order $<_{\text {lex }}$: for $0 \neq g \in \bigsqcup_{\gamma \in \Gamma} B(\gamma)$ let $\gamma:=$ min support g. Then declare $g>0: \Leftrightarrow g(\gamma)>0$.

Then $\left(\bigsqcup B(\gamma),<_{\text {lex }}\right)$ is an ordered abelian group. Moreover, the natural valuation is the $v_{\text {min }}$ valuation. Similarly for the Hahn product.

Theorem 3.7. (Hahn's embedding theorem for divisible ordered abelian groups) Let G be a divisible ordered abelian group with skeleton $S(G)=[\Gamma,\{B(\gamma)$: $\gamma \in \Gamma\}]$. Then

$$
\left(\bigsqcup B(\gamma),<_{\operatorname{lex}}\right) \hookrightarrow(G,<) \hookrightarrow\left(\operatorname{H} B(\gamma),<_{\operatorname{lex}}\right)
$$

