REAL ALGEBRAIC GEOMETRY LECTURE NOTES (10: 11/05/15 - CORRECTED ON 20/05/2019)

SALMA KUHLMANN

Contents

1. Valued fields1
2. The natural valuation of an ordered field 2

Chapter II: Valuations on ordered fields (particularly real closed fields)

1. Valued fields

Definition 1.1. Let K be a field, G an ordered abelian group and ∞ an element greater than every element of G. A surjective map

$$
w: K \longrightarrow G \cup\{\infty\}
$$

is a valuation if and only if $\forall a, b \in K$:
(i) $w(a)=\infty \Leftrightarrow a=0$,
(ii) $w(a b)=w(a)+w(b)$,
(iii) $w(a-b) \geqslant \min \{w(a), w(b)\}$.

Immediate consequences:

- $w(1)=0$,
- $w(a)=w(-a)$,
- $w\left(a^{-1}\right)=-w(a)$ if $a \neq 0$,
- $w(a) \neq w(b) \Rightarrow w(a+b)=\min \{w(a), w(b)\}$.

Definition 1.2.

(i) $R_{w}:=\{a \in K: w(a) \geqslant 0\}$ is a subring of K, called the valuation ring of w.
(ii) $I_{w}:=\{a \in K: w(a)>0\} \subseteq R_{w}$ is called the valuation ideal of w.
(iii) $U_{w}:=\left\{a \in R_{w}: a^{-1} \in R_{w}\right\}=\left\{a \in R_{w}: w(a)=0\right\}$ is a multiplicative subgroup of R_{w} and is called the group of units of R_{w}.

Remark 1.3.

- Note that $R_{w}=U_{w} \dot{\cup} I_{w}$. By this observation one can immediately show that R_{w} is a local ring with unique maximal ideal I_{w}.
- Note that for any $x \in K^{\times}$either $x \in R_{w}$ or $x^{-1} \in R_{w}$ (or both in case $x \in U_{w}$).

Definition 1.4.

(i) The residue field is denoted by $K_{w}:=R_{w} / I_{w}$.
(ii) The residue $\operatorname{map} R_{w} \rightarrow K_{w}, a \mapsto \bar{a}:=a w$ is the canonical projection.
(iii) The group of 1-units of R_{w} is denoted by

$$
1+I_{w}:=\left\{a \in R_{w}: w(a-1)>0\right\}
$$

and is a multiplicative subgroup of U_{w}.

2. The natural valuation of an ordered field

Let $(K,+, \cdot, 0,1,<)$ be an ordered field.
Remark 2.1. $(K,+, 0,<)$ is an ordered divisible abelian group.
So on $(K,+, 0,1)$ we have already defined the natural valuation, namely via the "Archimedean equivalence relation":

$$
\begin{array}{rlcc}
0 \neq a & \mapsto & v(a):=[a] \\
0 & \mapsto & \infty
\end{array}
$$

We have set $G:=(K,+, 0,1) / \sim^{+}$and totally ordered G by

$$
[a]<[b]: \Leftrightarrow b \ll^{+} a \text {. }
$$

We shall show now that we can endow the totally ordered value set $(G,<)$ with a group operation + such that $(G,+,<)$ is a totally ordered abelian group. For every $a, b \in K \backslash\{0\}$ define

$$
[a]+[b]:=[a b],
$$

or in valuation notation

$$
v(a)+v(b):=v(a b)
$$

Lemma 2.2.

(i) $(G,+,<)$ is an ordered abelian group.
(ii) The map $v:(K,+, \cdot, 0,1,<) \rightarrow G \cup\{\infty\}$ is a (field) valuation.

From now on let K be an ordered field and $v: K \rightarrow G \cup\{\infty\}$ its natural valuation, with value group $v\left(K^{*}\right)=G$.

Consider

$$
\begin{aligned}
& R_{v}:=\{a \in K: v(a) \geqslant 0\} \\
& I_{v}:=\{a \in K: v(a)>0\}
\end{aligned}
$$

What are R_{v} and I_{v} (from the point of view of chapter 1)?

$$
\begin{aligned}
R_{v}: & =\{a:[a] \geqslant[1]\} \\
& =\left\{a: a \sim^{+} 1 \text { or } a \ll^{+} 1\right\} \\
& =\{a: v(a) \geqslant v(1)\} . \\
I_{v}: & =\{a:[a]>[1]\} \\
& =\left\{a: a \ll^{+} 1\right\} \\
& =\{a: v(a)>v(1)\} .
\end{aligned}
$$

Proposition 2.3. (Properties of the natural valuation)

(1) The valuation ring R_{v} is a convex subring of K. It consists of all the elements of K that are bounded in absolute value by some natural number $n \in \mathbb{N}$. Therefore R_{v} is often called the ring of bounded elements, or the ring of finite elements.
This valuation ring of the natural valuation is indeed the convex hull of \mathbb{Q} in K. It is the smallest convex subring of $(K,<)$.
(2) The valuation ideal I_{v} is a convex ideal. It consists of all elements of K that are strictly bounded in absolute value by $\frac{1}{n}$ for every $n \in \mathbb{N}$. Therefore I_{v} is called the ideal of infinitely small elements, or ideal of infinitesimal elements.
(3) The residue field K_{v} is Archimedean, i.e. a subfield of \mathbb{R}.

