REAL ALGEBRAIC GEOMETRY LECTURE NOTES (12: 21/05/15 - CORRECTED ON 27/05/2019)

SALMA KUHLMANN

Contents

1. Proof of Neumann's lemma

1. Proof of Neumann's lemma

The aim of today's lecture is to prove Neumann's lemma. By what was shown last time, we then obtain that $k((G))$ is indeed a field.

Proposition 1.1. Set $S_{n}:=\operatorname{support} \varepsilon^{n}$ and $S:=\bigcup_{n \in \mathbb{N}} S_{n}$. Then S is a well-ordered set.

Remark 1.2. Note that support $\varepsilon^{n} \subseteq \operatorname{support} \varepsilon \oplus \ldots \oplus \operatorname{support} \varepsilon$ (n-times). Thus, S_{n} is well-ordered for any $n \in \mathbb{N}$.
Proof. (of the proposition)
We argue by contradiction. Let ($u_{i}: i \in \mathbb{N}$) $\subseteq S$ be an infinite strictly decreasing sequence. We write

$$
u_{i}=a_{i_{1}}+\ldots+a_{i_{n_{i}}},
$$

where $a_{i_{j}} \in S_{1} \subset G^{>0} \forall j=1, \ldots, u_{i}$. Let v_{G} denote the natural valuation on G.

$$
\text { ÜB: } \operatorname{sign}\left(g_{1}\right)=\operatorname{sign}\left(g_{2}\right) \Rightarrow v_{G}\left(g_{1}+g_{2}\right)=\min \left\{v_{G}\left(g_{1}\right), v_{G}\left(g_{2}\right)\right\} \text {. }
$$

Note that $v_{G}\left(u_{i}\right)=\min \left\{v_{G}\left(a_{i_{j}}\right)\right\} \underbrace{=}_{\text {wlog }} v_{G}\left(a_{i_{1}}\right)$. Thus, $v_{G}\left(S_{u}\right)=v_{G}\left(S_{1}\right)$.
Now recall that

$$
0<g_{1}<g_{2} \Rightarrow v_{G}\left(g_{1}\right) \geqslant v_{G}\left(g_{2}\right) .
$$

Since $v_{G}\left(S_{1}\right)$ is anti well-ordered and since $\left(v_{G}\left(u_{i}\right): i \in \mathbb{N}\right) \subset v_{G}\left(S_{1}\right)$ is an increasing sequence, it must stabilize after finitely many terms. We assume without loss of generality that it is constant and denote this constant by $U \in v_{G}(G \backslash\{0\})$, without loss of generality U is as large as possible. So for every $i \in \mathbb{N}$ consider $v_{G}\left(u_{i}\right)=U=v_{G}\left(a_{i_{1}}\right)$. Let a^{*} be the smallest element in S_{1} for which $v_{G}\left(a^{*}\right)=U$.

We have that $v_{G}\left(u_{1}\right)=U=v_{G}\left(a^{*}\right)$, so $0<u_{1} \leqslant r a^{*}$ for some $r \in \mathbb{N}$. Fix r. Then $u_{i} \leqslant r a^{*} \forall i \in \mathbb{N}$. Since S_{1} is well-ordered, it does not contain any infinite decreasing sequence, so we may without loss of generality assume
that $n_{i}>1 \forall i \in \mathbb{N}$. We write $u_{i}=a_{i_{1}}+v_{i}$, where $v_{i} \in S_{n_{i}-1}$ and $v_{i} \neq 0 \forall i$.
Claim: There is a subsequence $\left(v_{i_{k}}\right)_{k}$ of $\left(v_{i}\right)_{i}$, which is strictly decreasing.
Let us construct this subsequence. Note that the set $\left\{u_{i}-v_{i}: i \in \mathbb{N}\right\}$ is well-ordered. Proceed as follows:
Let $u_{i_{1}}-v_{i_{1}}=\min \left\{u_{i}-v_{i}\right\}$, let $u_{i_{2}}-v_{i_{2}}$ be the smallest element of the set $\left\{u_{i}-v_{i}: i>i_{1}\right\}$ etc., so $\left(u_{i_{k}}-v_{i_{k}}\right)_{k}$ is an increasing sequence, i.e. $u_{i_{k+1}}-v_{i_{k+1}} \geqslant u_{i_{k}}-v_{i_{k}}$, so

$$
v_{i_{k+1}}-v_{i_{k}} \leqslant u_{i_{k+1}}-u_{i_{k}}
$$

Therefore, $\left(v_{i_{k}}\right)_{k}$ is strictly decreasing in S, and this proves the claim.
Now note that $0<v_{i}<u_{i} \forall i$. Therefore, $v_{G}\left(v_{i}\right) \geqslant v_{G}\left(u_{i}\right)=U$, i.e. $v_{G}\left(v_{i_{k}}\right)=U \forall k$ (recall that U was as large as possible).
But now $a^{*} \leqslant a_{i_{1}}$ and $u_{i} \leqslant r a^{*}$. Hence,

$$
v_{i}=\left(u_{i}-a_{i_{1}}\right) \leqslant(r-1) a^{*} \forall i
$$

in particular for all i_{k}, so $v_{i_{k}} \leqslant(r-1) a^{*} \forall k$ and $\left(v_{i_{k}}\right)_{k}$ is strictly decreasing with $v_{G}\left(v_{i_{k}}\right)=U \forall k$.

Repeat the argument with the sequence $\left\{v_{i_{k}}\right\} \subset S \subset G^{>0}$ to eventually get a sequence $\leqslant(r-l) a^{*}<0$, the desired contradiction.

Proposition 1.3. $\forall g \in S:\left|\left\{n \in \mathbb{N}: g \in S_{n}\right\}\right|<\infty$.
Proof. Assume $\exists a \in S$ such that $\left|\left\{n \in \mathbb{N}: a \in S_{n}\right\}\right|=\infty$. Since S is well-ordered, we may choose a to be the smallest such element of S. Write

$$
\begin{equation*}
a=a_{i_{1}}^{j}+\ldots+a_{i_{n_{j}}}^{j} \in S_{n_{j}} \tag{*}
\end{equation*}
$$

where n_{j} is strictly increasing in \mathbb{N} and $a_{i_{k}}^{j} \in S_{1}$. So $\left\{a_{i_{1}}^{j}: j \in \mathbb{N}\right\} \subseteq S_{1}$ is well-ordered. Thus, this set has an infinite increasing sequence, assume without loss of generality that $\left(a_{i_{1}}^{j} \mid j \in \mathbb{N}\right)$ is increasing.

Denote by $a_{j}^{\prime}:=a_{i_{2}}^{j}+\ldots+a_{i_{n_{i}}}^{j} \in S_{n_{j}-1}$, so $a_{j}^{\prime}<a \forall i \in \mathbb{N}$. Since $(*)$ is constant and $\left(a_{i_{1}} \mid i \in \mathbb{N}\right)$ is increasing, we obtain that $\left\{a_{j}^{\prime}: j \in \mathbb{N}\right\}$ is decreasing and contained in S. Therefore it stabilizes, i.e. becomes ultimately constant. Denote this constant by $a_{j}^{\prime}:=a^{\prime} \forall j \gg N$. So $a^{\prime} \in S_{n_{j}-1}$, and therefore

$$
\left|\left\{n \in \mathbb{N}: a^{\prime} \in S_{n}\right\}\right|=\infty \forall j \gg N
$$

and $a^{\prime}<a$ because $a^{\prime}=a_{j}^{\prime}<a \forall j \gg N$, contradicting the minimality of a.

The two propositions finish the proof of Neumann's lemma.

