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1. Proof of Neumann's lemma

The aim of today's lecture is to prove Neumann's lemma. By what was
shown last time, we then obtain that k((G)) is indeed a �eld.

Proposition 1.1. Set Sn := support εn and S :=
⋃

n∈N Sn. Then S is a
well-ordered set.

Remark 1.2. Note that support εn ⊆ support ε⊕ . . .⊕ support ε (n-times).
Thus, Sn is well-ordered for any n ∈ N.

Proof. (of the proposition)
We argue by contradiction. Let (ui : i ∈ N) ⊆ S be an in�nite strictly
decreasing sequence. We write

ui = ai1 + . . .+ aini
,

where aij ∈ S1 ⊂ G>0 ∀j = 1, . . . , ui. Let vG denote the natural valuation
on G.

ÜB: sign(g1) = sign(g2)⇒ vG(g1 + g2) = min{vG(g1), vG(g2)}.

Note that vG(ui) = min{vG(aij )} =︸︷︷︸
wlog

vG(ai1). Thus, vG(Su) = vG(S1).

Now recall that
0 < g1 < g2 ⇒ vG(g1) > vG(g2).

Since vG(S1) is anti well-ordered and since (vG(ui) : i ∈ N) ⊂ vG(S1) is an
increasing sequence, it must stabilize after �nitely many terms. We assume
without loss of generality that it is constant and denote this constant by
U ∈ vG(G\{0}), without loss of generality U is as large as possible. So for
every i ∈ N consider vG(ui) = U = vG(ai1). Let a

∗ be the smallest element
in S1 for which vG(a

∗) = U.

We have that vG(u1) = U = vG(a
∗), so 0 < u1 6 ra∗ for some r ∈ N. Fix

r. Then ui 6 ra∗ ∀i ∈ N. Since S1 is well-ordered, it does not contain any
in�nite decreasing sequence, so we may without loss of generality assume
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that ni > 1 ∀i ∈ N. We write ui = ai1 + vi, where vi ∈ Sni−1 and vi 6= 0 ∀i.

Claim: There is a subsequence (vik)k of (vi)i, which is strictly decreasing.

Let us construct this subsequence. Note that the set {ui − vi : i ∈ N} is
well-ordered. Proceed as follows:
Let ui1 − vi1 = min{ui − vi}, let ui2 − vi2 be the smallest element of the
set {ui − vi : i > i1} etc., so (uik − vik)k is an increasing sequence, i.e.
uik+1

− vik+1
> uik − vik , so

vik+1
− vik 6 uik+1

− uik .

Therefore, (vik)k is strictly decreasing in S, and this proves the claim.

Now note that 0 < vi < ui ∀i. Therefore, vG(vi) > vG(ui) = U, i.e.
vG(vik) = U ∀k (recall that U was as large as possible).
But now a∗ 6 ai1 and ui 6 ra∗. Hence,

vi = (ui − ai1) 6 (r − 1)a∗ ∀i,
in particular for all ik, so vik 6 (r− 1)a∗ ∀k and (vik)k is strictly decreasing
with vG(vik) = U ∀k.

Repeat the argument with the sequence {vik} ⊂ S ⊂ G>0 to eventually
get a sequence 6 (r − l)a∗ < 0, the desired contradiction.

�

Proposition 1.3. ∀g ∈ S : |{n ∈ N : g ∈ Sn}| <∞.

Proof. Assume ∃a ∈ S such that |{n ∈ N : a ∈ Sn}| = ∞. Since S is
well-ordered, we may choose a to be the smallest such element of S. Write

a = aji1 + . . .+ ajinj
∈ Snj (∗)

where nj is strictly increasing in N and ajik ∈ S1. So {aji1 : j ∈ N} ⊆ S1

is well-ordered. Thus, this set has an in�nite increasing sequence, assume

without loss of generality that (aji1 |j ∈ N) is increasing.

Denote by a′j := aji2 + . . . + ajini
∈ Snj−1, so a′j < a ∀i ∈ N. Since

(∗) is constant and (ai1 |i ∈ N) is increasing, we obtain that {a′j : j ∈ N} is
decreasing and contained in S. Therefore it stabilizes, i.e. becomes ultimately
constant. Denote this constant by a′j := a′ ∀j >> N. So a′ ∈ Snj−1, and
therefore ∣∣{n ∈ N : a′ ∈ Sn}

∣∣ =∞ ∀j >> N,

and a′ < a because a′ = a′j < a ∀j >> N, contradicting the minimality of a.
�

The two propositions �nish the proof of Neumann's lemma.


