REAL ALGEBRAIC GEOMETRY LECTURE NOTES (14: 01/06/15 - CORRECTED ON 03/06/19)

SALMA KUHLMANN

Contents

1.	Hardy fields]
2.	The natural valuation of a Hardy field	1
3.	Construction of non-Archimedean real closed fields	2
4.	Towards the proof of the Main Theorem	3

1. Hardy fields

Today we want to define the canonical valuation on a Hardy field H. For this purpose we observe:

Remark 1.1. (Monotonicity of germs)

Let H be a Hardy field and $f \in H$, $f' \neq 0$. Since $f' \in H$ is ultimately strictly positive or negative, it follows that f is ultimately strictly increasing or decreasing. Therefore

$$\lim_{x \to +\infty} f(x) \in \mathbb{R} \cup \{-\infty, \infty\}$$

exists.

Example 1.2.

- (i) \mathbb{R} and \mathbb{Q} are Archimedean Hardy fields (constant germs)
- (ii) Consider the set of germs of real rational functions with coefficients in \mathbb{R} (multivariate). By abuse of denation denote it by $\mathbb{R}(X)$. Verify that this is a Hardy field.

Note that with respect to the order defined on a Hardy field, this is a non-Archimedean field, because the function X is ultimately > N for all $N \in \mathbb{N}$.

2. The natural valuation of a Hardy field

Definition 2.1. (The canonical valuation on a Hardy field H). Let H be a Hardy field. Define for $0 \neq f, g \in H$

$$f \sim g \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = r \in \mathbb{R} \setminus \{0\}.$$

This is an equivalence relation, called **asymptotic equivalence relation**. Denote the equivalence class of $0 \neq f$ by v(f). Define

$$v(0) := \infty \text{ and } v(f) + v(g) := v(fg),$$

Moreover, define an order on the set $\{v(f): f \in H\}$ by setting

$$\infty = v(0) > v(f)$$
 for $f \neq 0$.

and

$$v(f) > v(g) \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

Verify that (v(H), +, <) is a totally ordered abelian group.

Lemma 2.2. The map

$$\begin{array}{cccc} v: H & \longrightarrow & v(H) \ \cup & \{\infty\} \\ 0 \neq f & \mapsto & v(f) \\ 0 & \mapsto & \infty \end{array}$$

is a valuation and it is equivalent to the natural valuation.

Remark 2.3.

$$R_v = \{ f : \lim_{x \to \infty} f(x) \in \mathbb{R} \}.$$

$$I_v = \{ f : \lim_{x \to \infty} f(x) = 0 \}.$$

$$\mathcal{U}_v = \{ f : \lim_{x \to \infty} f(x) \in \mathbb{R}^\times \}.$$

3. Construction of non-Archimedean real closed fields

Our next goal is to prove the following:

Theorem 3.1. (Main Theorem of chapter 2) Let $k \subseteq \mathbb{R}$ be a subfield, G a totally ordered abelian group and $\mathbb{K} := k((G))$. Then \mathbb{K} is a real closed field if and only if

- (i) G is divisible,
- (ii) k is a real closed field.

Remark 3.2. Once the Main Theorem is proved we can proceed as follows (starting from \mathbb{R}) to construct non-Archimedean real closed fields:

- (1) Let $\emptyset \neq \Gamma$ be a totally ordered set.
- (2) Choose divisible subgroups of $(\mathbb{R}, +, 0, <)$, say $\{B_{\gamma} : \gamma \in \Gamma\}$ (note that \mathbb{R} is a \mathbb{Q} -vector space).
- (3) Take $\bigsqcup_{\gamma \in \Gamma} B_{\gamma} \subset G \subset H_{\gamma \in \Gamma} B_{\gamma}$. Note that G is a divisible ordered abelian group.
- (4) Take $k \subset \mathbb{R}$ a subfield and consider $k^{\rm rc} = \{\alpha \in \mathbb{R} : \alpha \text{ alg. over } k\}$. Then $k^{\rm rc} \subset \mathbb{R}$ is a real closed field (because \mathbb{R} is real closed).
- (5) Set $\mathbb{K} = k^{\mathrm{rc}}((G))$.

In the next chapters, we will show "Kaplansky's embedding theorem": any real closed field is a subfield of such a \mathbb{K} .

4. Towards the proof of the Main Theorem

Let $k \subset \mathbb{R}$ and G be an ordered abelian group.

Proposition 4.1. Set $\mathbb{K} = k((G))$ and $v = v_{\min}$. If \mathbb{K} is real closed, then G is divisible and k is a real closed field.

Proof. We first prove that G is divisible. So let $g \in G$ and $n \in \mathbb{N}$. We have to show that $\frac{g}{n} \in G$. Assume without loss of generality g > 0. Consider $\mathbb{K} \ni s = t^g > 0$ in the lex order on \mathbb{K} .

(Note that a real closed field R is "root closed for positive elements": For some s > 0 consider $x^n - s$. Then $0^n - s < 0$ and $(s+1)^n - s > 0$. The Intermediate Value Theorem gives a root in the interval]0, s+1[).

Since \mathbb{K} is real closed take $y=\sqrt[n]{s}\in\mathbb{K}$. Then v(s)=g and thus $v(y)=\frac{g}{n}\in G$.

To show that k is a real closed field let $n \in \mathbb{N}$ be odd and consider some polynomial

$$x^n + c_{n-1}x^{n-1} + \ldots + c_0 \in k[X] \subseteq \mathbb{K}[X].$$

Since \mathbb{K} is real closed, we find some $x \in \mathbb{K}$ such that x is a root of this polynomial, i.e.

$$x^{n} + c_{n-1}x^{n-1} + \ldots + c_0 = 0.$$

Note that the residue field of \mathbb{K} is k and the residue map is a homomorphism. We want to compute \overline{c} for $c \in k$. Note that $s = c = ct^0 \in k$ so $v_{\min}(c) = 0$ and $\overline{c} = c$. So the residue map is just the identity on k. It remains to show that $v(x) \geq 0$. Assume v(x) < 0. Then

$$v(x^n + \ldots + c_0) = v(0) = \infty,$$

a contradiction.