REAL ALGEBRAIC GEOMETRY LECTURE NOTES (14: 01/06/15 - CORRECTED ON 03/06/19)

SALMA KUHLMANN

Contents

1. Hardy fields 1
2. The natural valuation of a Hardy field 1
3. Construction of non-Archimedean real closed fields 2
4. Towards the proof of the Main Theorem 3

1. Hardy fields

Today we want to define the canonical valuation on a Hardy field H. For this purpose we observe:

Remark 1.1. (Monotonicity of germs)
Let H be a Hardy field and $f \in H, f^{\prime} \neq 0$. Since $f^{\prime} \in H$ is ultimately strictly positive or negative, it follows that f is ultimately strictly increasing or decreasing. Therefore

$$
\lim _{x \rightarrow+\infty} f(x) \in \mathbb{R} \cup\{-\infty, \infty\}
$$

exists.

Example 1.2.

(i) \mathbb{R} and \mathbb{Q} are Archimedean Hardy fields (constant germs)
(ii) Consider the set of germs of real rational functions with coefficients in \mathbb{R} (multivariate). By abuse of denation denote it by $\mathbb{R}(X)$. Verify that this is a Hardy field.
Note that with respect to the order defined on a Hardy field, this is a non-Archimedean field, because the function X is ultimately $>N$ for all $N \in \mathbb{N}$.

2. The natural valuation of a Hardy field

Definition 2.1. (The canonical valuation on a Hardy field H). Let H be a Hardy field. Define for $0 \neq f, g \in H$

$$
f \sim g \Leftrightarrow \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=r \in \mathbb{R} \backslash\{0\}
$$

This is an equivalence relation, called asymptotic equivalence relation. Denote the equivalence class of $0 \neq f$ by $v(f)$. Define

$$
v(0):=\infty \text { and } v(f)+v(g):=v(f g)
$$

Moreover, define an order on the set $\{v(f): f \in H\}$ by setting

$$
\infty=v(0)>v(f) \text { for } f \neq 0
$$

and

$$
v(f)>v(g) \Leftrightarrow \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0
$$

Verify that $(v(H),+,<)$ is a totally ordered abelian group.

Lemma 2.2. The map

$$
\begin{aligned}
v: H & \longrightarrow v(H) \cup\{\infty\} \\
0 \neq f & \mapsto v(f) \\
0 & \mapsto \infty
\end{aligned}
$$

is a valuation and it is equivalent to the natural valuation.

Remark 2.3.

$$
\begin{aligned}
R_{v} & =\left\{f: \lim _{x \rightarrow \infty} f(x) \in \mathbb{R}\right\} \\
I_{v} & =\left\{f: \lim _{x \rightarrow \infty} f(x)=0\right\} \\
\mathcal{U}_{v} & =\left\{f: \lim _{x \rightarrow \infty} f(x) \in \mathbb{R}^{\times}\right\}
\end{aligned}
$$

3. Construction of non-Archimedean real closed fields

Our next goal is to prove the following:
Theorem 3.1. (Main Theorem of chapter 2)
Let $k \subseteq \mathbb{R}$ be a subfield, G a totally ordered abelian group and $\mathbb{K}:=k((G))$.
Then \mathbb{K} is a real closed field if and only if
(i) G is divisible,
(ii) k is a real closed field.

Remark 3.2. Once the Main Theorem is proved we can proceed as follows (starting from \mathbb{R}) to construct non-Archimedean real closed fields:
(1) Let $\emptyset \neq \Gamma$ be a totally ordered set.
(2) Choose divisible subgroups of $(\mathbb{R},+, 0,<)$, say $\left\{B_{\gamma}: \gamma \in \Gamma\right\}$ (note that \mathbb{R} is a \mathbb{Q}-vector space).
(3) Take $\bigsqcup_{\gamma \in \Gamma} B_{\gamma} \subset G \subset \mathrm{H}_{\gamma \in \Gamma} B_{\gamma}$. Note that G is a divisible ordered abelian group.
(4) Take $k \subset \mathbb{R}$ a subfield and consider $k^{\text {rc }}=\{\alpha \in \mathbb{R}: \alpha$ alg. over $k\}$. Then $k^{\text {rc }} \subset \mathbb{R}$ is a real closed field (because \mathbb{R} is real closed).
(5) Set $\mathbb{K}=k^{\mathrm{rc}}((G))$.

In the next chapters, we will show "Kaplansky's embedding theorem": any real closed field is a subfield of such a \mathbb{K}.

4. Towards the proof of the Main Theorem

Let $k \subset \mathbb{R}$ and G be an ordered abelian group.
Proposition 4.1. Set $\mathbb{K}=k((G))$ and $v=v_{\min }$. If \mathbb{K} is real closed, then G is divisible and k is a real closed field.

Proof. We first prove that G is divisible. So let $g \in G$ and $n \in \mathbb{N}$. We have to show that $\frac{g}{n} \in G$. Assume without loss of generality $g>0$. Consider $\mathbb{K} \ni s=t^{g}>0$ in the lex order on \mathbb{K}.
(Note that a real closed field R is "root closed for positive elements": For some $s>0$ consider $x^{n}-s$. Then $0^{n}-s<0$ and $(s+1)^{n}-s>0$. The Intermediate Value Theorem gives a root in the interval $] 0, s+1[)$.

Since \mathbb{K} is real closed take $y=\sqrt[n]{s} \in \mathbb{K}$. Then $v(s)=g$ and thus $v(y)=\frac{g}{n} \in G$.

To show that k is a real closed field let $n \in \mathbb{N}$ be odd and consider some polynomial

$$
x^{n}+c_{n-1} x^{n-1}+\ldots+c_{0} \in k[X] \subseteq \mathbb{K}[X] .
$$

Since \mathbb{K} is real closed, we find some $x \in \mathbb{K}$ such that x is a root of this polynomial, i.e.

$$
x^{n}+c_{n-1} x^{n-1}+\ldots+c_{0}=0
$$

Note that the residue field of \mathbb{K} is k and the residue map is a homomorphism. We want to compute \bar{c} for $c \in k$. Note that $s=c=c t^{0} \in k$ so $v_{\text {min }}(c)=0$ and $\bar{c}=c$. So the residue map is just the identity on k. It remains to show that $v(x) \geqslant 0$. Assume $v(x)<0$. Then

$$
v\left(x^{n}+\ldots+c_{0}\right)=v(0)=\infty
$$

a contradiction.

