REAL ALGEBRAIC GEOMETRY LECTURE NOTES (18: 18/06/15 - CORRECTED ON 28/06/19)

SALMA KUHLMANN

Contents

1. The rank of ordered fields 1
2. The Descent 2

1. The rank of ordered fields

(Applications later on: the rank of a Hardy-field).
Definition 1.1. Let K be a field and w and w^{\prime} be valuations on K. We say that w^{\prime} is finer than w or that w is coarser than w^{\prime}, if $K_{w^{\prime}} \subseteq K_{w}$ (or equivalently $I_{w} \subseteq I_{w^{\prime}}$.

Remark 1.2.

(i) An overring of a valuation ring is a valuation ring.
(ii) If w^{\prime} is a convex valuation and w is coarser than w^{\prime}, then w is a convex valuation.
(iii) We have proved that the natural valuation on an ordered field K induces the smallest (for inclusion) convex valuation ring of K.
(iv) The collection of all convex valuations (respectively valuation rings) of K is totally ordered by inclusion.

Definition 1.3. The rank of the totally ordered field K is the (order type of the totally ordered) set

$$
\mathcal{R}:=\left\{K_{w}: K_{w} \text { is a convex valuation and } K_{v} \subsetneq K_{w}\right\},
$$

where v denotes the natural valuation. Note that

$$
\mathcal{R}:=\left\{K_{w}: w \text { is strictly coarser than } v\right\} .
$$

Example 1.4.

- The rank of an Archimedean ordered field is empty (since its natural valuation is trivial), its order type 0 .
- The rank of the rational function field $K=\mathbb{R}(t)$ with any order is a singleton. Indeed the field $\mathbb{R}(t)$ is non-Archimedean under any order (see RAG I). Moreover, any ordering of $\mathbb{R}(t)$ has rank 1 .

2. The Descent

From the ordered field K down to the ordered group $v\left(K^{\times}\right)=: G$.
Let K_{w} be a convex valuation ring of K. We associate to w the following subset of G :

$$
\begin{aligned}
G_{w}: & =\{v(a): a \in K, w(a)=0\} \\
& =\left\{v(a): a \in K^{>0}, w(a)=0\right\} \\
& =v\left(U_{w}\right)=v\left(U_{w}^{>0}\right) .
\end{aligned}
$$

Remark 2.1. Note that w is a coarsening of v if the following holds:

$$
v(a) \leqslant v(b) \Rightarrow w(a) \leqslant w(b) .
$$

Lemma 2.2. G_{w} is a convex subgroup of G.
Proof.

- $0=v(1)$ and $1 \in U_{w}$.
- Let $g \in G_{w}$. Show $-g \in G_{w}$. Let $a \in U_{w}$ such that $g=v(a)$. Then $a^{-1} \in U_{w}$ and

$$
G_{w} \ni v\left(a^{-1}\right)=-v(a)=-g .
$$

- Similarly assume $g_{1}, g_{2} \in G_{w}$. There exist $a_{1}, a_{2} \in U_{w}$ such that $v\left(a_{i}\right)=g_{i}$. Then $a_{1} a_{2} \in U_{w}$ and

$$
v\left(a_{1} a_{2}\right)=v\left(a_{1}\right)+v\left(a_{2}\right)=g_{1}+g_{2} \in G_{w} .
$$

- Let $g \in G_{w}$ and $0<h<g$ for some $h \in G$. Show $h \in G_{w}^{>0}$. Let $g=v(b), b \in U_{w}$, and $h=v(a)$ for some $a \in K^{>0}$. Then

$$
v(a) \leqslant v(b) \Rightarrow w(a) \leqslant w(b)=0 \Rightarrow w(a)=0 .
$$

Lemma 2.3. The value group $w\left(K^{\times}\right)$is isomorphic (as an ordered group) to $v\left(K^{\times}\right) / G_{w}$, so

$$
w\left(K^{\times}\right) \cong v\left(K^{\times}\right) / v\left(U_{w}\right) .
$$

Proof. Consider the map

$$
\phi: v\left(K^{\times}\right) \rightarrow w\left(K^{\times}\right), v(a) \mapsto w(a) .
$$

Compute

$$
\begin{aligned}
\operatorname{ker} \phi & =\{v(a): \phi(v(a))=0\} \\
& =\{v(a): w(a)=0\} \\
& =G_{w},
\end{aligned}
$$

i.e. ϕ is a surjective homomorphism with kernel G_{w}, so $w\left(K^{\times}\right) \cong v\left(K^{\times}\right) / G_{w}$. Moreover this isomorphism is order preserving: note that since G_{w} is a convex subgroup of $v\left(K^{\times}\right)$, the group $v\left(K^{\times}\right) / G_{w}$ is totally ordered.

Definition 2.4. Given w a coarsening of v, we call $G_{w}=v\left(U_{w}\right)$ the convex subgroup of G associated to w.

Conversely, we get the following result:
Lemma 2.5. Given any convex subgroup C of G we define a valuation w on K as follows:

$$
w: K^{\times} \rightarrow v\left(K^{\times}\right) / C, w(a)=v(a)+C \quad \text { (the canonical map) }
$$

Then w is a convex valuation on K and $G_{w}=C$.
Proof.

- $v(a) \in G_{w} \Leftrightarrow w(a)=0 \Leftrightarrow v(a) \in C$.

$$
\begin{aligned}
w(a+b) & =v(a+b)+C \geqslant \min \{v(a)+C, v(b)+C\} \\
& \Leftrightarrow v(a+b) \geqslant \min \{v(a), v(b)\} \\
& \Leftrightarrow w(a+b) \geqslant \min \{w(a), w(b)\} .
\end{aligned}
$$

- $0<a \leqslant b \Rightarrow v(a) \geqslant v(b) \Rightarrow v(a)+C \geqslant v(b)+C \Rightarrow w(a) \geqslant w(b)$.
\bullet

$$
\begin{aligned}
w(a b) & =v(a b)+C=(v(a)+v(b))+C \\
& =(v(a)+C)+(v(b)+C) \\
& =w(a)+w(b) .
\end{aligned}
$$

Definition 2.6. w is called the convex valuation associated to C.
Let us summarize:
Proposition 2.7. Suppose that w is coarser than v. Then for all $a, b \in K$:

$$
v(a) \leqslant v(b) \Rightarrow w(a) \leqslant w(b) .
$$

Let $G_{w}=v\left(U_{w}\right)$ be the convex subgroup of $v\left(K^{\times}\right)$associated to w. Then

$$
w\left(K^{\times}\right) \cong v\left(K^{\times}\right) / G_{w} .
$$

Conversely every convex subgroup C of $v\left(K^{\times}\right)$is of the form G_{w}, where w is the convex valuation associated to C.

Corollary 2.8. (Descent into the value group)
The correspondence $K_{w} \mapsto G_{w}$ is a one to one (inclusion) order preserving correspondence between the rank of K and the rank of $G=v\left(K^{\times}\right)$.

Example 2.9.

(i) $K=\mathbb{R}((\mathbb{Z}))$ the field of Laurent series ordered lex. Then $\mathcal{R}_{K}=1$.
(ii) $K=\mathbb{R}((\mathbb{Q})) \Rightarrow \operatorname{rank}$ is 1 ,
(iii) $K=\mathbb{R}((\mathbb{R})) \Rightarrow$ rank is 1 .
(iv) $K=\mathbb{R}((\mathbb{Z} \times \mathbb{Z})) \Rightarrow$ rank is 2 .

