REAL ALGEBRAIC GEOMETRY LECTURE NOTES (18: 18/06/15 - CORRECTED ON 28/06/19)

SALMA KUHLMANN

$\operatorname{Contents}$

1

2

1.	The rank of ordered fields
2.	The Descent

1. The rank of ordered fields

(Applications later on: the rank of a Hardy-field).

Definition 1.1. Let K be a field and w and w' be valuations on K. We say that w' is **finer** than w or that w is **coarser** than w', if $K_{w'} \subseteq K_w$ (or equivalently $I_w \subseteq I_{w'}$).

Remark 1.2.

- (i) An overring of a valuation ring is a valuation ring.
- (ii) If w' is a convex valuation and w is coarser than w', then w is a convex valuation.
- (iii) We have proved that the natural valuation on an ordered field K induces the smallest (for inclusion) convex valuation ring of K.
- (iv) The collection of all convex valuations (respectively valuation rings) of K is totally ordered by inclusion.

Definition 1.3. The **rank** of the totally ordered field K is the (order type of the totally ordered) set

 $\mathcal{R} := \{ K_w : K_w \text{ is a convex valuation and } K_v \subsetneq K_w \},\$

where v denotes the natural valuation. Note that

 $\mathcal{R} := \{ K_w : w \text{ is strictly coarser than } v \}.$

Example 1.4.

• The rank of an Archimedean ordered field is empty (since its natural valuation is trivial), its order type 0.

SALMA KUHLMANN

The rank of the rational function field K = R(t) with any order is a singleton. Indeed the field R(t) is non-Archimedean under any order (see RAG I). Moreover, any ordering of R(t) has rank 1.

2. The Descent

From the ordered field K down to the ordered group $v(K^{\times}) =: G$.

Let K_w be a convex valuation ring of K. We associate to w the following subset of G:

$$G_w := \{v(a) : a \in K, w(a) = 0\}$$

= $\{v(a) : a \in K^{>0}, w(a) = 0\}$
= $v(U_w) = v(U_w^{>0}).$

Remark 2.1. Note that w is a coarsening of v if the following holds:

$$v(a) \leqslant v(b) \Rightarrow w(a) \leqslant w(b).$$

Lemma 2.2. G_w is a convex subgroup of G.

Proof.

- 0 = v(1) and $1 \in U_w$.
- Let $g \in G_w$. Show $-g \in G_w$. Let $a \in U_w$ such that g = v(a). Then $a^{-1} \in U_w$ and

$$G_w \ni v(a^{-1}) = -v(a) = -g.$$

• Similarly assume $g_1, g_2 \in G_w$. There exist $a_1, a_2 \in U_w$ such that $v(a_i) = g_i$. Then $a_1 a_2 \in U_w$ and

$$v(a_1a_2) = v(a_1) + v(a_2) = g_1 + g_2 \in G_w.$$

• Let $g \in G_w$ and 0 < h < g for some $h \in G$. Show $h \in G_w^{>0}$. Let $g = v(b), b \in U_w$, and h = v(a) for some $a \in K^{>0}$. Then

$$v(a) \leqslant v(b) \Rightarrow w(a) \leqslant w(b) = 0 \Rightarrow w(a) = 0.$$

Lemma 2.3. The value group $w(K^{\times})$ is isomorphic (as an ordered group) to $v(K^{\times})/G_w$, so

$$w(K^{\times}) \cong v(K^{\times})/v(U_w).$$

Proof. Consider the map

$$\phi: v(K^{\times}) \to w(K^{\times}), \, v(a) \mapsto w(a).$$

Compute

$$\ker \phi = \{ v(a) : \phi(v(a)) = 0 \}$$

= $\{ v(a) : w(a) = 0 \}$
= $G_w,$

 $\mathbf{2}$

i.e. ϕ is a surjective homomorphism with kernel G_w , so $w(K^{\times}) \cong v(K^{\times})/G_w$. Moreover this isomorphism is order preserving: note that since G_w is a convex subgroup of $v(K^{\times})$, the group $v(K^{\times})/G_w$ is totally ordered.

Definition 2.4. Given w a coarsening of v, we call $G_w = v(U_w)$ the **convex** subgroup of G associated to w.

Conversely, we get the following result:

Lemma 2.5. Given any convex subgroup C of G we define a valuation w on K as follows:

$$w: K^{\times} \to v(K^{\times})/C, w(a) = v(a) + C$$
 (the canonical map)

Then w is a convex valuation on K and $G_w = C$.

Proof.

•
$$v(a) \in G_w \Leftrightarrow w(a) = 0 \Leftrightarrow v(a) \in C.$$

• $w(a+b) = v(a+b) + C \ge \min\{v(a) + C, v(b) + C\}$
 $\Leftrightarrow v(a+b) \ge \min\{v(a), v(b)\}$
 $\Leftrightarrow w(a+b) \ge \min\{w(a), w(b)\}.$
• $0 < a \le b \Rightarrow v(a) \ge v(b) \Rightarrow v(a) + C \ge v(b) + C \Rightarrow w(a) \ge w(b).$
• $w(ab) = v(ab) + C = (v(a) + v(b)) + C$
 $= (v(a) + C) + (v(b) + C)$
 $= w(a) + w(b).$

Definition 2.6. w is called the **convex valuation associated to** C.

Let us summarize:

Proposition 2.7. Suppose that w is coarser than v. Then for all $a, b \in K$:

$$v(a) \leqslant v(b) \Rightarrow w(a) \leqslant w(b).$$

Let $G_w = v(U_w)$ be the convex subgroup of $v(K^{\times})$ associated to w. Then $w(K^{\times}) \cong v(K^{\times})/G_w.$

Conversely every convex subgroup C of $v(K^{\times})$ is of the form G_w , where w is the convex valuation associated to C.

Corollary 2.8. (Descent into the value group) The correspondence $K_w \mapsto G_w$ is a one to one (inclusion) order preserving correspondence between the rank of K and the rank of $G = v(K^{\times})$.

Example 2.9.

SALMA KUHLMANN

- (i) $K = \mathbb{R}(\mathbb{Z})$ the field of Laurent series ordered lex. Then $\mathcal{R}_K = 1$.
- (*ii*) $K = \mathbb{R}((\mathbb{Q})) \Rightarrow$ rank is 1,
- (*iii*) $K = \mathbb{R}((\mathbb{R})) \Rightarrow \text{rank is } 1.$
- $(iv) \ K = \mathbb{R}((\mathbb{Z} \times \mathbb{Z})) \Rightarrow \text{rank is } 2.$