REAL ALGEBRAIC GEOMETRY LECTURE NOTES (19: 22/06/15 - CORRECTED ON 01/07/19)

SALMA KUHLMANN

Contents

1. Final segments

1. FINAL SEGMENTS

As always, let K be an ordered field and let v denote the natural valuation on K with value group $G := v(K^*)$.

Lemma 1.1. Let G be a totally ordered abelian group and denote by v_G its natural valuation.

- (i) If G_w ≠ {0} is some convex subgroup of G, then Γ_w := v_G(G_w\{0}) is a non-empty final segment of Γ := v_G(G\{0}) (Γ denotes the value set of G)
- (ii) Conversely, if Γ_w is a non-empty final segment of Γ , then

$$G_w := \{ q \in G : v_G(q) \in \Gamma_w \} \cup \{ 0 \}$$

is a convex subgroup of G with $\Gamma_w = v_G(G_w)$.

Proof.

- (i) Clearly Γ_w is non-empty since $G_w \neq \{0\}$. Show Γ_w is a final segment. Let $\gamma \in \Gamma_w$ and $\gamma' \in \Gamma$ such that $\gamma < \gamma'$. We want to show that $\gamma' \in \Gamma_w$. Now $\gamma \in \Gamma_w$, so let $g \in G_w$ such that $\gamma = v_G(g)$ and let $g' \in G$ such that $v_G(g') = \gamma'$. Now $\gamma < \gamma'$ means g' << g, i.e. $n|g'| \leq |g|$. Therefore $g' \in G_w$ since G_w is convex. Thus, $\gamma' \in \Gamma_w$ as required.
- (ii) ÜA.

Definition 1.2. Let $\Gamma \neq \emptyset$ be a totally ordered set. Define

 $\Gamma^{\rm fs} := \{F : F \neq \emptyset \text{ a final segment of } \Gamma\}.$

Remark 1.3. The set Γ^{fs} is totally ordered by inclusion. Indeed, given $F_1 \neq \emptyset, F_2 \neq \emptyset$ final segments, either $F_1 \subseteq F_2$ or $F_2 \subseteq F_1$ (verify!). So Γ^{fs} is a totally ordered set.

1

SALMA KUHLMANN

Example 1.4.

• For $\Gamma = \mathbb{R}$, what is the order type of Γ^{fs} ?

A proper non-empty final segment of \mathbb{R} is either of the form $r^+ := [r, \infty)$ or $r^- := (r, \infty)$ for $r \in \mathbb{R}$ (Recall the Dedekind completeness of the reals, see RAG I). Hence,

$$\Gamma^{\mathrm{fs}} = \{ r^{\pm} : r \in \mathbb{R} \} \cup \{ \mathbb{R} \}.$$

Clearly $r^- < r^+$. Let $r_1 \neq r_2$, say $r_1 < r_2$. Then $r_2^- < r_2^+ < r_1^- < r_1^+$, i.e. Γ^{fs} is a double covering of \mathbb{R} ,

$$\left(\sum_{\mathbb{R}} 2\right) + 1 = \mathbb{R} \times_{\text{lex}} 2 + 1.$$

• Suppose $\Gamma = \mathbb{Q}$ and $F := \{q \in \mathbb{Q} : q > \sqrt{2}\}$. Let $\emptyset \neq F$ be a proper final segment of \mathbb{Q} .

$$-q \in \mathbb{Q}, \text{ then } F = [q, \infty) =: q^+ \text{ and } F = (q, \infty) =: q^- \text{ in } \mathbb{Q}.$$
$$-r \in \mathbb{R} \setminus \mathbb{Q}, F = r^{-1} \cap \mathbb{Q} = r^+ \cap \mathbb{Q}.$$

We claim that these are all the proper non-empty final segments.

•
$$\mathbb{Z}^{\mathrm{fs}} = \mathbb{Z} + \{1\}.$$

Corollary 1.5. There is a 1 to 1 correspondence

 $G_w \mapsto v_G(G_w \setminus \{0\}) = \Gamma_w$

between the rank of G and Γ^{fs} , where $\Gamma = v_G(G \setminus \{0\})$.

Corollary 1.6. There is a bijective correspondence

$$K_w \mapsto G_w = v(U_w) \mapsto \Gamma_w$$

between the rank of K and Γ^{fs} .

Lemma 1.7. The map

$$\iota: \Gamma \to \Gamma^{fs}, \gamma \mapsto \gamma^+$$

is an order reversing embedding. Its image consists of those final segments which have a smallest element

Notation 1.8. Let us denote by Γ^* the set Γ endowed with the reverse order.

Corollary 1.9. The map $\iota : \Gamma^* \hookrightarrow \Gamma^{fs}, \gamma \mapsto \gamma^+$ is an order preserving embedding.

Definition 1.10. A final segment which has a smallest element is called a **principal final segment**.

Corollary 1.11. Γ^* is isomorphic to the chain of principal final segments of Γ .

 $\mathbf{2}$