REAL ALGEBRAIC GEOMETRY LECTURE NOTES (20: 25/06/15 - CORRECTED ON 01/07/19)

SALMA KUHLMANN

CONTENTS

1.	Principal final segments	1
2.	Principal convex subgroups	1
3.	Principal convex rank	2

1. PRINCIPAL FINAL SEGMENTS

Last lecture we studied the order type of the chain Γ^{fs} of non-empty final segments of the set $\Gamma =: v_G(G \setminus \{0\})$.

Lemma 1.1. The order type of the chain Γ^{fs} is uniquely determined by the order type of Γ , i.e. if Γ_1 and Γ_2 are chains such that $\phi : \Gamma_1 \cong \Gamma_2$ as ordered sets, then $\Gamma_1^{fs} \cong \Gamma_2^{fs}$ as ordered sets.

Proof. Define $\phi^{\text{fs}} : \Gamma_1^{\text{fs}} \to \Gamma_2^{\text{fs}}, F \mapsto \phi(F)$. Verify (ÜA) that ϕ is injective, i.e. $F_1 \subsetneq F_2 \Rightarrow \phi(F_1) \subsetneq \phi(F_2)$ (*)

so the map ϕ^{fs} is injective. Also if $F' \in \Gamma_2^{\text{fs}}$, then $\phi^{-1}(F') \in \Gamma_1^{\text{fs}}$, so $\phi^{\text{fs}}(\phi^{-1}(F')) = F'$, showing ϕ^{fs} is surjective. Finally ϕ^{fs} is order preserving because of (*).

Recall we noted last lecture that Γ^* is order isomorphic to the totally ordered (inclusion) set of principal final segments, given by

$$\Gamma^* \to \Gamma^{\text{pfs}}, \ \gamma \mapsto [\gamma, \infty) = \gamma^+.$$

2. PRINCIPAL CONVEX SUBGROUPS

Definition 2.1. Let G be a totally ordered abelian group and $G_w \neq \{0\}$ a convex subgroup. G_w is said to be a **principal convex subgroup**, if $\exists g \in G$ such that G_w is the smallest convex subgroup containing g.

Remark 2.2. In the notation introduced and used in chapter I, $G_w = C_g$, i.e. G_w is the convex subgroup generated by g.

Lemma 2.3. Let $G_w \neq \{0\}$ be a convex subgroup of G. The following are equivalent:

- (i) G_w is principle convex generated by g,
- (ii) Γ_w is a principal final segment, namely $v_G(g)^+$.

Proof. First show $(i) \Rightarrow (ii)$. Note that $[g] \cap G_w^{<0}$ is an initial segment in G_w and that $[g] \cap G_w^{>0}$ is a final segment in G_w . So $v_G(g)$ is the smallest element of the final segment Γ_w , i.e. $\Gamma_w = v_G(g)^+$. Show now $(ii) \Rightarrow (i)$. Assume that $\exists g \in G^{>0}$ such that $\Gamma_w = v_G(g)^+$ and argue reversing implications that we must have $[g] \cap G_w^{>0}$ is a final segment, i.e. G_w is the smallest convex subgroup containing g and multiples. \Box

3. PRINCIPAL CONVEX RANK

Definition 3.1. Let G be a totally ordered abelian group. The **principal** rank of G is the order type of the chain of principle convex subgroups $\neq \{0\}$ of G.

Corollary 3.2. (Characterization of the principal rank)

The map $G_w \mapsto \min v_G(G_w)$ is an order reversing bijection between the principal rank of G and Γ . Therefore the principle rank of G is order isomorphic to Γ^{pfs} , i.e. to Γ^* .

Remark 3.3.

• Going down for the rank:

rank of $K \to \operatorname{rank}$ of $G = v(K) \to \Gamma^{\mathrm{fs}}, \Gamma = v_G(G) = v_G(v(K)).$

• Going up for the principal rank:

 $\Gamma^{\text{pfs}} \cong \Gamma^* \to \text{principal rank of } G \to \text{principal rank of } K?$

Definition 3.4.

- (i) A convex subring $K_w \supseteq K_v$ is said to be a **principal convex subring** if $\exists a \in K^{>0} \setminus K_v$ such that K_w is the smallest convex subring containing a. We say K_w is the convex subring generated by a.
- (*ii*) The **principal rank of** K is the (order type of the) set of all principal convex valuation rings ordered by inclusion. Denote it by $\mathcal{R}^{\mathrm{pr}} \subset \mathcal{R}$.

Definition 3.5. Let $a, b \in K^{>0} \setminus K$. We define a relation

 $a \sim b : \Leftrightarrow \exists n \in \mathbb{N} \text{ such that } a^n \ge b \text{ and } b^n \ge a.$

 $\ddot{U}A$: Show that ~ is an (Archimedean) equivalence relation. Moreover,

 $a \sim b \Leftrightarrow v(a) \sim^+ v(b) \Leftrightarrow v_G(v(a)) = v_G(v(b)).$

Therefore

$$K \to v(K) \to v_G(v(K^*)).$$

Theorem 3.6. (Characterization of the principal rank of an ordered field) For $K_w \in \mathcal{R}$, the following are equivalent:

- (i) $K_w \in \mathcal{R}^{pr}$ (generated by a)
- (ii) G_w is a principal convex subgroup of $G = v(K^*)$ generated by v(a).
- (iii) Γ_w is a principal final segment generated by $v_G(v(a))^+$.

Corollary 3.7. $\mathcal{R}^{pr} \cong \Gamma^*$.

Corollary 3.8. Given a chain $\Delta \neq \emptyset$, there exists a non-Archimedean real closed field K such that $\mathcal{R}_{K}^{\mathrm{pr}}$ is isomorphic to Δ .

Proof. Take $k = \mathbb{R}$ (for example). Set $\Gamma = \Delta^*$, set $G := \bigoplus_{\Gamma} \mathbb{R}$ the Hahn sum. Then G has principal rank $\Gamma^* = \Delta^{**} = \Delta$. Set

$$\mathbb{K} = k((G)) = \mathbb{R}((G)).$$

Then \mathbb{K} has principal rank Δ .