REAL ALGEBRAIC GEOMETRY LECTURE NOTES (21: 29/06/15 - CORRECTED ON 11/07/19)

SALMA KUHLMANN

Contents

1. Real closed exponential fields 1
2. Additive lexicographic decomposition 2
3. Multiplicative lexicographic decomposition 3

Chapter IV: Real closed exponential fields

1. REal closed exponential fields

Definition 1.1. Let K be a real closed field and

$$
\exp :(K,+, 0,<) \rightarrow\left(K^{>0}, \cdot, 1,<\right)
$$

such that exp is an order preserving isomorphism of ordered groups, i.e.
(i) $x<y \Rightarrow \exp (x)<\exp (y)$,
(ii) $\exp (x+y)=\exp (x) \exp (y)$.

Then $(K,+, 0,1,<, \exp)$ is called a real closed exponential field.

Question: Is the theory $T_{\exp }=\operatorname{Th}(\mathbb{R},+, \cdot, 0,1,<, \exp)$ decidable?

- Osgood proved that $T_{\exp }$ does not admit quantifier-elimination.
- ~ 1991 A. Wilkie showed that $T_{\exp }$ is o-minimal.
- In 1994 A. Wilkie and A. Macintyre showed that $T_{\text {exp }}$ is decidable if Schanuel's conjecture is true. In fact they showed that $T_{\exp }$ is decidable, if and only if "a weak form of Schanuel's conjecture" is true.

2. ADDITIVE LEXICOGRAPHIC DECOMPOSITION

Remark 2.1. Let A, B be ordered abelian groups. The lexicographic product $A \sqcup B$ is the ordered abelian group defined as follows:
As a group it is just the direct sum $A \oplus B$. The total order is the lexicographic order on $A \oplus B$, i.e. for $a_{i} \in A$ and $b_{i} \in B$

$$
a_{1}+b_{1}<a_{2}+b_{2}: \Leftrightarrow \text { either } a_{1}<a_{2} \text { or } a_{1}=a_{2} \text { and } b_{1}<b_{2} .
$$

Recall 2.2. A complement U of a subspace W of V is just a subspace such that $V=U \oplus W$. Moreover, U is unique up to isomorphism.

Theorem 2.3. Let $(K,+, \cdot, 0,1,<)$ be an ordered non-Archimedean field with value group G and residue field \bar{K}. Consider the ordered divisible abelian group $(K,+, 0,<)$.

- There exists a complement \mathbb{A} of K_{v} in $(K,+, 0,<)$ and a complement \mathbb{A}^{\prime} of I_{v} in K_{v} such that $(K,+, 0,<)=\mathbb{A} \sqcup \mathbb{A}^{\prime} \sqcup I_{v}$.
- Both \mathbb{A} and \mathbb{A}^{\prime} are unique (up to isomorphism of ordered groups). Moreover, \mathbb{A}^{\prime} is isomorphic to $(\bar{K},+, 0,<)$.
- Furthermore the value set of \mathbb{A} is $G^{<0}$ and the value set of I_{v} is $G^{>0}$. The Archimedean components of \mathbb{A} and I_{v} are all isomorphic to $(\bar{K},+, 0,<)$.

The proof of this theorem will be in the assignment. Consider

$$
v:(K,+, 0,<) \rightarrow G
$$

Note that $v\left(I_{v}\right)=G^{>0}$, so $v(\mathbb{A})=G^{<0}$.

Hilfslemma 2.4.

(i) Let M be an ordered \mathbb{Q}-vector space and C a convex subspace of M such that $M=C^{\prime} \oplus C$, where C^{\prime} is the vector space complement of C in M. Then $M=C^{\prime} \sqcup C$.
(ii) Let $\eta: M \rightarrow N$ be a surjective homomorphism of ordered vector spaces. Then ker η is a convex subspace of M and $M \cong N \sqcup$ ker η.
(iii) Let M, N be ordered vector spaces with convex subspaces C and D, respectively. Assume that $\eta: M \rightarrow N$ is an isomorphism of ordered vector spaces such that $\eta(C)=D$. Then

$$
\bar{\eta}: M / C \mapsto N / D, a+C \mapsto \eta(a)+D
$$

is a well-defined isomorphism of ordered vector spaces.

Remark 2.5. Consider the divisible ordered abelian group $(K,+, 0,<)$ and $x=1 \in K$. Compute $C_{1}=\left(K_{v},+, 0,<\right)$ and $D_{1}=\left(I_{v},+, 0,<\right)$. For the Archimedean component we have

$$
B_{1} \cong C_{1} / D_{1} \cong(\bar{K},+, 0,<)
$$

We generalize this observation to the following:
Proposition 2.6. All the Archimedean components of the divisible ordered abelian group $(K,+, 0,<)$ are isomorphic to the divisible ordered abelian group $(\bar{K},+, 0,<)$.

Proof. Let $a \in K, a>0$. The map

$$
\eta: C_{a} \mapsto(\bar{K},+, 0,<), x \mapsto \overline{x a^{-1}}
$$

(Recall: $G=\{x: v(x) \geqslant v(a)\}$) is a surjective homomorphism of ordered groups with kernel $D_{a}=\{x: v(x)>v(a)\} \subset C_{a}$.

3. Multiplicative lexicographic Decomposition

Theorem 3.1. Let $(K,+, \cdot, 0,1,<)$ be a totally ordered non-Archimedean field with natural valuation $v, G=v\left(K^{*}\right)$ and residue field \bar{K}. Assume that K is root closed for positive elements, i.e. $\left(K^{>0}, \cdot, 1,<\right)$ is a divisible ordered group.

- There exists a group complement \mathbb{B} of $U_{v}^{>0}$ in $\left(K^{>0}, \cdot, 1,<\right)$ and a group complement \mathbb{B}^{\prime} of $1+I_{v}$ in $\left(U_{v}^{>0}, \cdot, 1,<\right)$ such that

$$
\left(K^{>0}, \cdot, 1,<\right)=\mathbb{B} \sqcup \mathbb{B}^{\prime} \sqcup\left(1+I_{v}, \cdot, 1,<\right) .
$$

- Every group complement \mathbb{B} is isomorphic to G.
- Every group complement \mathbb{B}^{\prime} is isomorphic to $\left(\bar{K}^{>0}, \cdot, 1,<\right)$.

The proof follows from the following two lemmas and the Hilfslemma.
Lemma 3.2. The map

$$
\left(K^{>0}, \cdot, 1,<\right) \rightarrow G, a \mapsto-v(a)=v\left(a^{-1}\right)
$$

is a surjective homomorphism of ordered groups with kernel $U_{v}^{>0}$. Thus, $U_{v}^{>0}$ is a convex subgroup of $\left(K^{>0}, \cdot, 1,<\right)$ and

$$
\left(K^{>0}, \cdot, 1,<\right) / U_{v}^{>0} \cong G .
$$

Therefore $\left(K^{>0}, \cdot, 1,<\right) \cong \mathbb{B} \sqcup U_{v}^{>0}$ with $\mathbb{B} \cong G$.

Lemma 3.3. The map

$$
\left(U_{v}^{>0}, \cdot, 1,<\right) \rightarrow\left(\bar{K}^{>0}, \cdot, 1,<\right), a \mapsto \bar{a}
$$

is a surjective homomorphism of ordered groups with kernel $1+I_{v}$. Thus

$$
\left(U_{v}^{>0}, \cdot, 1,<\right) /\left(1+I_{v}, \cdot, 1,<\right) \cong\left(\bar{K}^{>0}, \cdot, 1,<\right) .
$$

Therefore $U_{v}^{>0} \cong \mathbb{B}^{\prime} \sqcup 1+I_{v}$, where $\mathbb{B}^{\prime} \cong\left(\bar{K}^{>0}, \cdot, 1,<\right)$.

