REAL ALGEBRAIC GEOMETRY LECTURE NOTES (21: 29/06/15 - CORRECTED ON 11/07/19)

SALMA KUHLMANN

Contents

1.	Real closed exponential fields	1
2.	Additive lexicographic decomposition	2
3.	Multiplicative lexicographic decomposition	3

Chapter IV: Real closed exponential fields

1. Real closed exponential fields

Definition 1.1. Let K be a real closed field and

$$\exp: (K, +, 0, <) \to (K^{>0}, \cdot, 1, <)$$

such that exp is an order preserving isomorphism of ordered groups, i.e.

(i)
$$x < y \Rightarrow \exp(x) < \exp(y)$$
,

(*ii*) $\exp(x+y) = \exp(x)\exp(y)$.

Then $(K, +, 0, 1, <, \exp)$ is called a real closed exponential field.

Question: Is the theory $T_{exp} = Th(\mathbb{R}, +, \cdot, 0, 1, <, exp)$ decidable?

- Osgood proved that T_{exp} does not admit quantifier-elimination.
- ~ 1991 A. Wilkie showed that T_{exp} is o-minimal.
- In 1994 A. Wilkie and A. Macintyre showed that $T_{\rm exp}$ is decidable if Schanuel's conjecture is true. In fact they showed that $T_{\rm exp}$ is decidable, if and only if "a weak form of Schanuel's conjecture" is true.

SALMA KUHLMANN

2. Additive lexicographic decomposition

Remark 2.1. Let A, B be ordered abelian groups. The **lexicographic product** $A \sqcup B$ is the ordered abelian group defined as follows: As a group it is just the direct sum $A \oplus B$. The total order is the lexicographic order on $A \oplus B$, i.e. for $a_i \in A$ and $b_i \in B$

 $a_1 + b_1 < a_2 + b_2$: \Leftrightarrow either $a_1 < a_2$ or $a_1 = a_2$ and $b_1 < b_2$.

Recall 2.2. A complement U of a subspace W of V is just a subspace such that $V = U \oplus W$. Moreover, U is unique up to isomorphism.

Theorem 2.3. Let $(K, +, \cdot, 0, 1, <)$ be an ordered non-Archimedean field with value group G and residue field \overline{K} . Consider the ordered divisible abelian group (K, +, 0, <).

- There exists a complement A of K_v in (K, +, 0, <) and a complement A' of I_v in K_v such that (K, +, 0, <) = A ⊔ A' ⊔ I_v.
- Both A and A' are unique (up to isomorphism of ordered groups). Moreover, A' is isomorphic to (K, +, 0, <).
- Furthermore the value set of A is G^{<0} and the value set of I_v is G^{>0}. The Archimedean components of A and I_v are all isomorphic to (K, +, 0, <).

The proof of this theorem will be in the assignment. Consider

$$v: (K, +, 0, <) \to G.$$

Note that $v(I_v) = G^{>0}$, so $v(\mathbb{A}) = G^{<0}$.

Hilfslemma 2.4.

- (i) Let M be an ordered \mathbb{Q} -vector space and C a convex subspace of M such that $M = C' \oplus C$, where C' is the vector space complement of C in M. Then $M = C' \sqcup C$.
- (ii) Let $\eta : M \to N$ be a surjective homomorphism of ordered vector spaces. Then ker η is a convex subspace of M and $M \cong N \sqcup$ ker η .
- (*iii*) Let M, N be ordered vector spaces with convex subspaces C and D, respectively. Assume that $\eta: M \to N$ is an isomorphism of ordered vector spaces such that $\eta(C) = D$. Then

$$\overline{\eta}: M/C \mapsto N/D, a + C \mapsto \eta(a) + D$$

is a well-defined isomorphism of ordered vector spaces.

Remark 2.5. Consider the divisible ordered abelian group (K, +, 0, <) and $x = 1 \in K$. Compute $C_1 = (K_v, +, 0, <)$ and $D_1 = (I_v, +, 0, <)$. For the Archimedean component we have

$$B_1 \cong C_1/D_1 \cong (\overline{K}, +, 0, <).$$

We generalize this observation to the following:

Proposition 2.6. All the Archimedean components of the divisible ordered abelian group (K, +, 0, <) are isomorphic to the divisible ordered abelian group $(\overline{K}, +, 0, <)$.

Proof. Let $a \in K, a > 0$. The map

$$\eta: C_a \mapsto (\overline{K}, +, 0, <), \ x \mapsto \overline{xa^{-1}}$$

(Recall: $G = \{x : v(x) \ge v(a)\}$) is a surjective homomorphism of ordered groups with kernel $D_a = \{x : v(x) > v(a)\} \subset C_a$.

3. Multiplicative lexicographic decomposition

Theorem 3.1. Let $(K, +, \cdot, 0, 1, <)$ be a totally ordered non-Archimedean field with natural valuation $v, G = v(K^*)$ and residue field \overline{K} . Assume that K is root closed for positive elements, i.e. $(K^{>0}, \cdot, 1, <)$ is a divisible ordered group.

• There exists a group complement \mathbb{B} of $U_v^{>0}$ in $(K^{>0}, \cdot, 1, <)$ and a group complement \mathbb{B}' of $1 + I_v$ in $(U_v^{>0}, \cdot, 1, <)$ such that

 $(K^{>0}, \cdot, 1, <) = \mathbb{B} \sqcup \mathbb{B}' \sqcup (1 + I_v, \cdot, 1, <).$

- Every group complement \mathbb{B} is isomorphic to G.
- Every group complement \mathbb{B}' is isomorphic to $(\overline{K}^{>0}, \cdot, 1, <)$.

The proof follows from the following two lemmas and the Hilfslemma.

Lemma 3.2. The map

$$(K^{>0}, \cdot, 1, <) \to G, a \mapsto -v(a) = v(a^{-1})$$

is a surjective homomorphism of ordered groups with kernel $U_v^{>0}$. Thus, $U_v^{>0}$ is a convex subgroup of $(K^{>0}, \cdot, 1, <)$ and

$$(K^{>0}, \cdot, 1, <)/U_v^{>0} \cong G$$

Therefore $(K^{>0}, \cdot, 1, <) \cong \mathbb{B} \sqcup U_v^{>0}$ with $\mathbb{B} \cong G$.

Lemma 3.3. The map

$$(U_v^{>0},\cdot,1,<)\to (\overline{K}^{>0},\cdot,1,<), \ a\mapsto \overline{a},$$

is a surjective homomorphism of ordered groups with kernel $1 + I_v$. Thus

$$(U_v^{>0}, \cdot, 1, <)/(1 + I_v, \cdot, 1, <) \cong (\overline{K}^{>0}, \cdot, 1, <).$$

Therefore $U_v^{>0} \cong \mathbb{B}' \sqcup 1 + I_v$, where $\mathbb{B}' \cong (\overline{K}^{>0}, \cdot, 1, <)$.