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The goal of this lecture is to describe the real closure of a Hardy field.
In particular, we want to prove the following theorem:

Theorem 0.1. (Main Theorem)
The real closure of a Hardy field is again a Hardy field.

1. Preliminaries

Notation 1.1.
• If f is a differentiable function from some half-line (a,∞) to C, we
will denote by δ(f) the derivative of f .

• If k is a field and P ∈ k[X], let P ′ denote the derivative of P and
Z(P ) the set of roots of P .

• F := {f : (a,∞)→ C | a ∈ R}.

• G := {f : (a,∞)→ R | a ∈ R} ⊆ F.

• For f, g ∈ F define

f ∼ g :⇔ ∃a ∈ R ∀x > a : f(x) = g(x).

Then ∼ is an equivalence relation on F. Denote by f the equivalence
class of f.

• Denote F := F/∼ and G := G/∼. Then F and G are rings with
operations defined by:

f + g = f + g and f g = fg.

• We say that f is differentiable if there exists a ∈ R such that f is
differentiable on (a,∞), and in that case we define the derivative of
f as δ(f) := δ(f)
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Definition 1.2.
(i) A Hardy field is a subring K of G which is a field and such that for

every f ∈ K, f is differentiable and δ(f) ∈ K.

(ii) A complex Hardy field is a subring K of F which is a field and
such that for every f ∈ K, f is differentiable and δ(f) ∈ K.

Definition 1.3. Let K be a Hardy field and P ∈ K[X] of degree n, say
P =

∑n
m=0 fmX

m. If a ∈ R is such that f1, . . . , fn are all defined and C1

on (a,∞) and fn(x) 6= 0 for all x > a, we say that P is defined on (a,∞).
Note that such an a always exists.

Notation 1.4. If P is defined on (a,∞), then for any x > a we define
Px :=

∑n
m=0 fm(x)Xm ∈ R[X].

Remark 1.5. Note that Px also has degree n and that (Px)
′ = (P ′)x, which

we will just denote by P ′x. Of course, the definition of Px depends on the
choice of representatives for f1, . . . , fn. However, whenever a polynomial is
introduced, we will always assume we have fixed the representatives of its
coefficients, so that Px is well-defined.

Remark 1.6. Note that if g ∈ F , then P (g) is the germ of the function∑
fig

i, so P (g) = 0 if and only if there exists some a such that Px(g(x)) = 0
for all x > a.

Recall 1.7. Let K be a field and P ∈ K[X].
(i) P has only simple roots in its splitting field iff gcd(P, P ′) = 1 iff there

exist A,B ∈ K[X] such that AP +BP ′ = 1.

(ii) If char(K) = 0 and P is irreducible, then gcd(P, P ′) = 1.

The keystone of the proof of the main theorem is a well-known theorem
from analysis, namely the implicit function theorem, which we recall
here.

Theorem 1.8. (IFT)
Let U ⊆ Rn, V ⊆ Rm be open, u : U × V → Rm a Ck function for some
k ∈ N and (x0, y0) ∈ U × V such that u(x0, y0) = 0 and det(∂u∂y (x0, y0)) 6= 0.
Then there exists an open ball U0 containing x0, an open ball V0 containing
y0 and a Ck function φ : U0 → V0 such that for any (x, y) ∈ U0 × V0 :

u(x, y) = 0⇔ y = φ(x).

We will actually need a particular form of the implicit function theorem,
namely:
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Theorem 1.9. (IFT’)
Let K be a Hardy field, P ∈ K[X] defined on (a,∞), x0 > a and y0 a
complex root of Px0 which is not a root of P ′x0

. Then there exists an open
interval I containing x0, an open ball U containing y0 and a C1 function
φ : I → U such that:

(∗) ∀(x, y) ∈ I × U : Px(y) = 0⇔ y = φ(x)

Proof. Set
u : (a,∞)× C→ C, (x, y) 7→ Px(y).

Then u is C1 on (a,∞) × C. By assumption, we have u(x0, y0) = 0 and
∂u
∂y (x0, y0) = P ′x0

(y0) 6= 0, so we can apply the IFT to the function u at the
point (x0, y0). �

2. Proof of the Main Theorem

Lemma 2.1. Let K be a Hardy field and P ∈ K[X] defined on (a,∞). If
gcd(P, P ′) = 1, then there exists some b > a such that gcd(Px, P

′
x) = 1 for

all x > b.

Proof. Since gcd(P, P ′) = 1, there are A,B ∈ K[X] such that AP+BP ′ = 1.
Now let b > a such that A,B are defined on (b,∞); for x > b we have
AxPx +BxP

′
x = 1, hence gcd(Px, P

′
x) = 1. �

Lemma 2.2. Let K be a Hardy field, P ∈ K[X] non-zero defined on (a,∞)
and f a continuous function from (a,∞) to C such that Px(f(x)) = 0 and
P ′x(f(x)) 6= 0 for all x > a. Then f is differentiable on (a,∞).

Proof. Let x0 > a, y0 := f(x0). By hypothesis, y0 is a root of Px0 but not of
P ′x0

. Thus, we may apply IFT’, and obtain I, U and φ as in IFT’ such that
(∗) holds.
Set J := I ∩ f−1(U). U is a neighborhood of y0 and f is continuous, so
f−1(U) is a neighborhood of x0, so J is also a neighborhood of x0. Let
x ∈ J ; by assumption we have Px(f(x)) = 0 and (x, f(x)) ∈ I × U , which
by (∗) implies that f(x) = φ(x).
Therefore f|J = φ|J , which, since φ is C1, implies that f is differentiable
at x0. Since x0 was chosen arbitrarily, we obtain that f is differentiable on
(a,∞). �

Proposition 2.3. Let K be a Hardy field and f ∈ F a continuous function
such that there exists P ∈ K[X] non-zero such that P (f) = 0. Then the ring
K[f ] is a complex Hardy field. If f happens to be in G, then K[f ] is a Hardy
field.

Proof. Without loss of generality we can assume that P is irreducible. This
implies that K[f ] is isomorphic to K[X]/(PK[X]), so it is a field. We now
have to show that every element of K[f ] is differentiable and that K[f ] is
stable under derivation. It is sufficient to show that f is differentiable and
that δ(f) ∈ K[f ].



4 SALMA KUHLMANN

Since P (f) = 0, there exists some a ∈ R such that Px(f(x)) = 0 for all
x > a. As P is irreducible and char(K) = 0, gcd(P, P ′) = 1, so by Lemma
2.1 there exists some b > a such that gcd(Px, P

′
x) = 1 for all x > b. Hence,

Px and P ′x have no root in common. Thus, Px(f(x)) = 0 6= P ′x(f(x)) for any
x > b. Now apply Lemma 2.2 and obtain that f is differentiable on (b,∞).
Set P =

∑n
m=0 gmX

m. Then

0 = δ(P (f)) =
n∑

m=0

δ(gmf
m
)

= δ(g0) +
n∑

m=1

(δ(gm)f
m
+mgmf

m−1
δ(f))

=
n∑

m=0

δ(gm) f
m
+ δ(f)

n∑
m=1

mgmf
m−1

= Q(f) + δ(f)P ′(f)

with Q ∈ K[X], hence δ(f) = −Q(f)

P ′(f)
∈ K(f) = K[f ]. �

Lemma 2.4. Let K be a Hardy field, n ∈ N and P ∈ K[X] of degree n
defined on (a,∞), such that Px has n distinct roots in C for all x > a.
For any pair (x0, y0) ∈ (a,∞)× C such that y0 is a root of Px0, there exists
a C1 function φ : (a,∞)→ C such that y0 = φ(x0) and

∀x > a : Px(φ(x)) = 0 (†)

Proof. Let x0 > a and y0 a complex root of Px0 . Since Px0 has simple roots,
y0 is not a root of P ′x0

, so we can apply IFT’ and we get an open interval I
containing x0, an open ball U containing y0 and a C1 function φ : I → U
such that (∗) is satisfied, which in particular implies that φ(x0) = y0 and
Px(φ(x)) = 0 for all x ∈ I. Define E to be the set

{(J, ψ) | I ⊆ J open interval, ψ C1-extension of φ to J satisfying (†) on J}.
Note that E is non-empty since (I, φ) ∈ E . We can partially order E by
saying that (J, ψ) 6 (J ′, χ) if J ⊆ J ′ and χ extends ψ.
Let (Jh, ψh)h∈H be a chain in E . Set J :=

⋃
h∈H Jh and define ψ on J by

ψ(x) = ψh(x) if x ∈ Jh; this is well-defined because ψh is an extension of ψh′

for any h, h′ ∈ H such that Jh′ ⊆ Jh. If x ∈ J , then x ∈ Jh for some h ∈ H,
and since (Jh, ψh) ∈ E we have Px(ψh(x)) = 0, hence Px(ψ(x)) = 0. Thus,
ψ satisfies (†) on J , so (J, ψ) ∈ E . Moreover, we have (Jh, ψh) 6 (J, ψ) for
any h ∈ H, so (J, ψ) is an upper bound of (Jh, ψh)h∈H .
We just proved that any chain of E has an upper bound. By Zorn’s lemma,
it follows that E has a maximal element (J, ψ)

To conclude the proof, we have to show that J = (a,∞). Set b := sup J .
Towards a contradiciton, assume that b 6= ∞. By hypothesis, Pb has n
distinct roots y1, . . . , yn, none of which is a root of P ′b. We apply IFT’ at
each of the points (b, y1), . . . , (b, yn), and we obtain open intervals I1, . . . , In
containing b, open balls U1, . . . , Un containing y1, . . . , yn and C1 functions
φ1 : I1 → U1, . . . , φn : In → Un, such that for each m ∈ {1, . . . , n}, for any
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(x, y) ∈ Im × Um, Px(y) = 0 ⇔ y = φm(x). Since y1, . . . , yn are pairwise
distinct,we can choose the sets U1, . . . , Un so small that they are pairwise
disjoint.

Let I ′ :=
⋂n

m=1 Im. For any x ∈ I ′, we have φ1(x) ∈ U1, . . . , φn(x) ∈ Un;
since U1, . . . , Un are pairwise disjoint, φ1(x), . . . , φn(x) are pairwise distinct.
By (∗), each φm(x) is a root of Px; since Px has n roots, it follows that
Z(Px) = {φ1(x), . . . , φn(x)} ⊆

⋃n
m=1 Um.

Let J ′ := I ′ ∩ J ; note that J ′ is an interval. For any x ∈ J ′, (†) implies
that ψ(x) is a root of Px, hence ψ(x) ∈

⋃n
m=1 Um. Thus, ψ(J ′) ⊆

⋃n
m=1 Um.

Since ψ is continuous, ψ(J ′) is connected. Since U1, . . . , Un are pairwise
disjoint, this implies that there exists m ∈ {1, . . . , n} such that ψ(J ′) ⊂ Um.

Let x ∈ J ′; we have (x, ψ(x)) ∈ Im × Um and Px(ψ(x)) = 0. Since φm
satisfies (∗) on Im × Um, it follows that ψ(x) = φm(x). This proves that
ψ|J ′ = φm|J ′ .

Define the function ψ̃ on J ∪ I ′ by ψ̃(x) :=

{
ψ(x) if x ∈ J
φm(x) if x ∈ I ′

.

This definition makes sense because ψ and φm agree on I ′. ψ̃ is a strict
extension of ψ. Since ψ and φm are C1, ψ̃ is also C1. Since ψ satisfies (†) on
J and φm satisfies (∗) on I ′, it follows that ψ̃ satisfies (†) on J ∪ I ′, which
contradicts the maximality of (J, ψ). Thus, b =∞ (note that we could prove
the same way that inf J = a). �

Lemma 2.5. Let K be a Hardy field and P ∈ K[X] of degree n such that
gcd(P, P ′) = 1. Then there exists some a ∈ R and n C1 functions φ1, . . . φn :
(a,∞)→ C such that Z(Px) = {φ1(x), . . . , φn(x)} for each x > a.

Proof. By Lemma 2.1, there exists some a0 ∈ R such that gcd(Px, P
′
x) = 1

for all x > a0, which means that Px has n distinct roots in C. Let a > a0,
and let y1, . . . , yn be the n distinct roots of Pa. By the previous lemma, we
obtain n C1 functions φ1, . . . , φn : (a0,∞) → C such that φm(a) = ym for
any m ∈ {1, . . . , n}, and {φ1(x) . . . , φn(x)} ⊆ Z(Px) for any x > a. To show
equality, we just have to show that φl(x) 6= φm(x) for any x > a and any
m, l ∈ {1, . . . , n}.

Now let m, l ∈ {1 . . . n} and E := [a,∞] ∩ (φm − φl)
−1({0}). Assume

E 6= ∅. By continuity of φm and φl, E is a closed subset of R and has a
lower bound a, so it has a minimum b. Since φm(a) 6= φl(a), b > a. Set
c := φm(b). c is a root of Pb, so we can apply IFT’ at the point (b, c) and
we get an open neighborhood I ×U of (b, c) and a map φ : I → U satisfying
(∗). Since U is a neighborhood of c, and since c = φm(b) = φl(b), φ−1l (U)
and φ−1m (U) are neighborhoods of b, so

J := I ∩ (a,∞) ∩ φ−1l (U) ∩ φ−1m (U)

is a neighborhood of b. Let x ∈ J such that x < b; (x, φl(x)) and (x, φm(x))
both belong to I × U and we have Px(φm(x)) = Px(φl(x)) = 0; since φ
satisfies (∗) on I × U , this implies φl(x) = φ(x) = φm(x), so x ∈ E, which
contradicts the minimality of b. Thus, E = ∅. �
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Proposition 2.6. Let k be a Hardy field,

K := {f ∈ G | f continuous and ∃P ∈ k[X] with P 6= 0 ∧ P (f) = 0}
and

L := {f ∈ F | f continuous and ∃P ∈ k[X] with P 6= 0 ∧ P (f) = 0}.
Then K is a Hardy field, L is a complex Hardy field, L is the algebraic closure
of k and K is the real closure of k.

Proof. Obviously, k ⊆ K ⊆ L. Now let f, g ∈ K. By Proposition 2.3, k[f ]
is a Hardy field. Since g is continuous and g is canceled by a polynomial in
k[f ][X], we can once again use Proposition 2.3 and we obtain that k[f, g] is
a Hardy field, and since it is algebraic over k, it is contained in K. Since
k[f, g] is a Hardy field, we have

0, 1, f − g, f
g
, δ(f), δ(g) ∈ k[f, g],

hence

0, 1, f − g, f
g
, δ(f), δ(g) ∈ K.

This proves that K is Hardy field. The same proof shows that L is a complex
Hardy field.

Now let us show that L is algebraically closed. Let P ∈ k[x] irreducible
of degree n > 1. Since char(k) = 0, gcd(P, P ′) = 1. By Lemma 2.5 there
exists some a ∈ R and C1 functions φ1, . . . , φn : (a,∞) → C, such that for
any x > a, Z(Px) = {φ1(x), . . . , φn(x)}. This means that φ1, . . . , φn are n
distinct roots of P . Since φ1, . . . , φn are continuous functions from (a,∞) to
C and φ1, . . . , φn are canceled by P ∈ k[X], we have φ1, . . . φn ∈ L.

Thus, any polynomial with coefficients in k splits in L. Since L/k is an
algebraic extension, this proves that L is algebraically closed, and thus L
is the algebraic closure of k. Finally note that L = K(i). Since K(i) is
algebraically closed, K is real closed, and it is the real closure of k. �

Corollary 2.7. The real closure of a Hardy field is again a Hardy field.


