REAL ALGEBRAIC GEOMETRY LECTURE NOTES (23: 06/07/15)

SALMA KUHLMANN

Contents

1. Preliminaries 1
2. Proof of the Main Theorem

Appendix

The goal of this lecture is to describe the real closure of a Hardy field. In particular, we want to prove the following theorem:
Theorem 0.1. (Main Theorem)
The real closure of a Hardy field is again a Hardy field.

1. Preliminaries

Notation 1.1.

- If f is a differentiable function from some half-line (a, ∞) to \mathbb{C}, we will denote by $\delta(f)$ the derivative of f.
- If k is a field and $P \in k[X]$, let P^{\prime} denote the derivative of P and $Z(P)$ the set of roots of P.
- $F:=\{f:(a, \infty) \rightarrow \mathbb{C} \mid a \in \mathbb{R}\}$.
- $G:=\{f:(a, \infty) \rightarrow \mathbb{R} \mid a \in \mathbb{R}\} \subseteq F$.
- For $f, g \in F$ define

$$
f \sim g: \Leftrightarrow \exists a \in \mathbb{R} \forall x>a: f(x)=g(x) .
$$

Then \sim is an equivalence relation on F. Denote by \bar{f} the equivalence class of f.

- Denote $\mathcal{F}:=F / \sim$ and $\mathcal{G}:=G / \sim$. Then \mathcal{F} and \mathcal{G} are rings with operations defined by:

$$
\bar{f}+\bar{g}=\overline{f+g} \text { and } \bar{f} \bar{g}=\overline{f g} .
$$

- We say that \bar{f} is differentiable if there exists $a \in \mathbb{R}$ such that f is differentiable on (a, ∞), and in that case we define the derivative of \bar{f} as $\delta(\bar{f}):=\overline{\delta(f)}$

Definition 1.2.

(i) A Hardy field is a subring K of \mathcal{G} which is a field and such that for every $\bar{f} \in K, \bar{f}$ is differentiable and $\delta(\bar{f}) \in K$.
(ii) A complex Hardy field is a subring K of \mathcal{F} which is a field and such that for every $\bar{f} \in K, \bar{f}$ is differentiable and $\delta(\bar{f}) \in K$.

Definition 1.3. Let K be a Hardy field and $P \in K[X]$ of degree n, say $P=\sum_{m=0}^{n} \bar{f}_{m} X^{m}$. If $a \in \mathbb{R}$ is such that f_{1}, \ldots, f_{n} are all defined and C^{1} on (a, ∞) and $f_{n}(x) \neq 0$ for all $x>a$, we say that P is defined on (a, ∞). Note that such an a always exists.

Notation 1.4. If P is defined on (a, ∞), then for any $x>a$ we define $P_{x}:=\sum_{m=0}^{n} f_{m}(x) X^{m} \in \mathbb{R}[X]$.

Remark 1.5. Note that P_{x} also has degree n and that $\left(P_{x}\right)^{\prime}=\left(P^{\prime}\right)_{x}$, which we will just denote by P_{x}^{\prime}. Of course, the definition of P_{x} depends on the choice of representatives for $\bar{f}_{1}, \ldots, \bar{f}_{n}$. However, whenever a polynomial is introduced, we will always assume we have fixed the representatives of its coefficients, so that P_{x} is well-defined.

Remark 1.6. Note that if $g \in F$, then $P(\bar{g})$ is the germ of the function $\sum f_{i} g^{i}$, so $P(\bar{g})=0$ if and only if there exists some a such that $P_{x}(g(x))=0$ for all $x>a$.

Recall 1.7. Let K be a field and $P \in K[X]$.
(i) P has only simple roots in its splitting field iff $\operatorname{gcd}\left(P, P^{\prime}\right)=1$ iff there exist $A, B \in K[X]$ such that $A P+B P^{\prime}=1$.
(ii) If $\operatorname{char}(K)=0$ and P is irreducible, then $\operatorname{gcd}\left(P, P^{\prime}\right)=1$.

The keystone of the proof of the main theorem is a well-known theorem from analysis, namely the implicit function theorem, which we recall here.

Theorem 1.8. (IFT)
Let $U \subseteq \mathbb{R}^{n}, V \subseteq \mathbb{R}^{m}$ be open, $u: U \times V \rightarrow \mathbb{R}^{m}$ a C^{k} function for some $k \in \mathbb{N}$ and $\left(x_{0}, y_{0}\right) \in U \times V$ such that $u\left(x_{0}, y_{0}\right)=0$ and $\operatorname{det}\left(\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)\right) \neq 0$. Then there exists an open ball U_{0} containing x_{0}, an open ball V_{0} containing y_{0} and a C^{k} function $\phi: U_{0} \rightarrow V_{0}$ such that for any $(x, y) \in U_{0} \times V_{0}$:

$$
u(x, y)=0 \Leftrightarrow y=\phi(x)
$$

We will actually need a particular form of the implicit function theorem, namely:

Theorem 1.9. (IFT')

Let K be a Hardy field, $P \in K[X]$ defined on $(a, \infty), x_{0}>a$ and $y_{0} a$ complex root of $P_{x_{0}}$ which is not a root of $P_{x_{0}}^{\prime}$. Then there exists an open interval I containing x_{0}, an open ball U containing y_{0} and a C^{1} function $\phi: I \rightarrow U$ such that:

$$
\text { (*) } \quad \forall(x, y) \in I \times U: P_{x}(y)=0 \Leftrightarrow y=\phi(x)
$$

Proof. Set

$$
u:(a, \infty) \times \mathbb{C} \rightarrow \mathbb{C},(x, y) \mapsto P_{x}(y) .
$$

Then u is C^{1} on $(a, \infty) \times \mathbb{C}$. By assumption, we have $u\left(x_{0}, y_{0}\right)=0$ and $\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)=P_{x_{0}}^{\prime}\left(y_{0}\right) \neq 0$, so we can apply the IFT to the function u at the point $\left(x_{0}, y_{0}\right)$.

2. Proof of the Main Theorem

Lemma 2.1. Let K be a Hardy field and $P \in K[X]$ defined on (a, ∞). If $\operatorname{gcd}\left(P, P^{\prime}\right)=1$, then there exists some $b>a$ such that $\operatorname{gcd}\left(P_{x}, P_{x}^{\prime}\right)=1$ for all $x>b$.

Proof. Since $\operatorname{gcd}\left(P, P^{\prime}\right)=1$, there are $A, B \in K[X]$ such that $A P+B P^{\prime}=1$. Now let $b>a$ such that A, B are defined on (b, ∞); for $x>b$ we have $A_{x} P_{x}+B_{x} P_{x}^{\prime}=1$, hence $\operatorname{gcd}\left(P_{x}, P_{x}^{\prime}\right)=1$.

Lemma 2.2. Let K be a Hardy field, $P \in K[X]$ non-zero defined on (a, ∞) and f a continuous function from (a, ∞) to \mathbb{C} such that $P_{x}(f(x))=0$ and $P_{x}^{\prime}(f(x)) \neq 0$ for all $x>a$. Then f is differentiable on (a, ∞).

Proof. Let $x_{0}>a, y_{0}:=f\left(x_{0}\right)$. By hypothesis, y_{0} is a root of $P_{x_{0}}$ but not of $P_{x_{0}}^{\prime}$. Thus, we may apply IFT', and obtain I, U and ϕ as in IFT' such that (*) holds.
Set $J:=I \cap f^{-1}(U)$. U is a neighborhood of y_{0} and f is continuous, so $f^{-1}(U)$ is a neighborhood of x_{0}, so J is also a neighborhood of x_{0}. Let $x \in J$; by assumption we have $P_{x}(f(x))=0$ and $(x, f(x)) \in I \times U$, which by ($*$) implies that $f(x)=\phi(x)$.
Therefore $f_{\mid J}=\phi_{\mid J}$, which, since ϕ is C^{1}, implies that f is differentiable at x_{0}. Since x_{0} was chosen arbitrarily, we obtain that f is differentiable on (a, ∞).

Proposition 2.3. Let K be a Hardy field and $f \in F$ a continuous function such that there exists $P \in K[X]$ non-zero such that $P(\bar{f})=0$. Then the ring $K[\bar{f}]$ is a complex Hardy field. If f happens to be in G, then $K[\bar{f}]$ is a Hardy field.

Proof. Without loss of generality we can assume that P is irreducible. This implies that $K[\bar{f}]$ is isomorphic to $K[X] /(P K[X])$, so it is a field. We now have to show that every element of $K[f]$ is differentiable and that $K[\bar{f}]$ is stable under derivation. It is sufficient to show that \bar{f} is differentiable and that $\delta(\bar{f}) \in K[\bar{f}]$.

Since $P(\bar{f})=0$, there exists some $a \in \mathbb{R}$ such that $P_{x}(f(x))=0$ for all $x>a$. As P is irreducible and $\operatorname{char}(K)=0, \operatorname{gcd}\left(P, P^{\prime}\right)=1$, so by Lemma 2.1 there exists some $b>a$ such that $\operatorname{gcd}\left(P_{x}, P_{x}^{\prime}\right)=1$ for all $x>b$. Hence, P_{x} and P_{x}^{\prime} have no root in common. Thus, $P_{x}(f(x))=0 \neq P_{x}^{\prime}(f(x))$ for any $x>b$. Now apply Lemma 2.2 and obtain that f is differentiable on (b, ∞). Set $P=\sum_{m=0}^{n} \bar{g}_{m} X^{m}$. Then

$$
\begin{aligned}
0=\delta(P(\bar{f})) & =\sum_{m=0}^{n} \delta\left(\bar{g}_{m} \bar{f}^{m}\right) \\
& =\delta\left(\overline{g_{0}}\right)+\sum_{m=1}^{n}\left(\delta\left(\bar{g}_{m}\right) \bar{f}^{m}+m \bar{g}_{m} \bar{f}^{m-1} \delta(\bar{f})\right) \\
& =\sum_{m=0}^{n} \overline{\delta\left(g_{m}\right)} \bar{f}^{m}+\delta(\bar{f}) \sum_{m=1}^{n} m \bar{g}_{m} \bar{f}^{m-1} \\
& =Q(\bar{f})+\delta(\bar{f}) P^{\prime}(\bar{f})
\end{aligned}
$$

with $Q \in K[X]$, hence $\delta(\bar{f})=\frac{-Q(\bar{f})}{P^{\prime}(\bar{f})} \in K(\bar{f})=K[\bar{f}]$.

Lemma 2.4. Let K be a Hardy field, $n \in \mathbb{N}$ and $P \in K[X]$ of degree n defined on (a, ∞), such that P_{x} has n distinct roots in \mathbb{C} for all $x>a$.
For any pair $\left(x_{0}, y_{0}\right) \in(a, \infty) \times \mathbb{C}$ such that y_{0} is a root of $P_{x_{0}}$, there exists $a C^{1}$ function $\phi:(a, \infty) \rightarrow \mathbb{C}$ such that $y_{0}=\phi\left(x_{0}\right)$ and

$$
\forall x>a: P_{x}(\phi(x))=0
$$

Proof. Let $x_{0}>a$ and y_{0} a complex root of $P_{x_{0}}$. Since $P_{x_{0}}$ has simple roots, y_{0} is not a root of $P_{x_{0}}^{\prime}$, so we can apply IFT' and we get an open interval I containing x_{0}, an open ball U containing y_{0} and a C^{1} function $\phi: I \rightarrow U$ such that $(*)$ is satisfied, which in particular implies that $\phi\left(x_{0}\right)=y_{0}$ and $P_{x}(\phi(x))=0$ for all $x \in I$. Define \mathcal{E} to be the set $\left\{(J, \psi) \mid I \subseteq J\right.$ open interval, ψC^{1}-extension of ϕ to J satisfying (\dagger) on $\left.J\right\}$. Note that \mathcal{E} is non-empty since $(I, \phi) \in \mathcal{E}$. We can partially order \mathcal{E} by saying that $(J, \psi) \leqslant\left(J^{\prime}, \chi\right)$ if $J \subseteq J^{\prime}$ and χ extends ψ.
Let $\left(J_{h}, \psi_{h}\right)_{h \in H}$ be a chain in \mathcal{E}. Set $J:=\bigcup_{h \in H} J_{h}$ and define ψ on J by $\psi(x)=\psi_{h}(x)$ if $x \in J_{h}$; this is well-defined because ψ_{h} is an extension of $\psi_{h^{\prime}}$ for any $h, h^{\prime} \in H$ such that $J_{h^{\prime}} \subseteq J_{h}$. If $x \in J$, then $x \in J_{h}$ for some $h \in H$, and since $\left(J_{h}, \psi_{h}\right) \in \mathcal{E}$ we have $P_{x}\left(\psi_{h}(x)\right)=0$, hence $P_{x}(\psi(x))=0$. Thus, ψ satisfies (\dagger) on J, so $(J, \psi) \in \mathcal{E}$. Moreover, we have $\left(J_{h}, \psi_{h}\right) \leqslant(J, \psi)$ for any $h \in H$, so (J, ψ) is an upper bound of $\left(J_{h}, \psi_{h}\right)_{h \in H}$.
We just proved that any chain of \mathcal{E} has an upper bound. By Zorn's lemma, it follows that \mathcal{E} has a maximal element (J, ψ)

To conclude the proof, we have to show that $J=(a, \infty)$. Set $b:=\sup J$. Towards a contradiciton, assume that $b \neq \infty$. By hypothesis, P_{b} has n distinct roots y_{1}, \ldots, y_{n}, none of which is a root of P_{b}^{\prime}. We apply IFT' at each of the points $\left(b, y_{1}\right), \ldots,\left(b, y_{n}\right)$, and we obtain open intervals I_{1}, \ldots, I_{n} containing b, open balls U_{1}, \ldots, U_{n} containing y_{1}, \ldots, y_{n} and C^{1} functions $\phi_{1}: I_{1} \rightarrow U_{1}, \ldots, \phi_{n}: I_{n} \rightarrow U_{n}$, such that for each $m \in\{1, \ldots, n\}$, for any
$(x, y) \in I_{m} \times U_{m}, P_{x}(y)=0 \Leftrightarrow y=\phi_{m}(x)$. Since y_{1}, \ldots, y_{n} are pairwise distinct, we can choose the sets U_{1}, \ldots, U_{n} so small that they are pairwise disjoint.

Let $I^{\prime}:=\bigcap_{m=1}^{n} I_{m}$. For any $x \in I^{\prime}$, we have $\phi_{1}(x) \in U_{1}, \ldots, \phi_{n}(x) \in U_{n}$; since U_{1}, \ldots, U_{n} are pairwise disjoint, $\phi_{1}(x), \ldots, \phi_{n}(x)$ are pairwise distinct. By $(*)$, each $\phi_{m}(x)$ is a root of P_{x}; since P_{x} has n roots, it follows that $Z\left(P_{x}\right)=\left\{\phi_{1}(x), \ldots, \phi_{n}(x)\right\} \subseteq \bigcup_{m=1}^{n} U_{m}$.

Let $J^{\prime}:=I^{\prime} \cap J$; note that J^{\prime} is an interval. For any $x \in J^{\prime},(\dagger)$ implies that $\psi(x)$ is a root of P_{x}, hence $\psi(x) \in \bigcup_{m=1}^{n} U_{m}$. Thus, $\psi\left(J^{\prime}\right) \subseteq \bigcup_{m=1}^{n} U_{m}$. Since ψ is continuous, $\psi\left(J^{\prime}\right)$ is connected. Since U_{1}, \ldots, U_{n} are pairwise disjoint, this implies that there exists $m \in\{1, \ldots, n\}$ such that $\psi\left(J^{\prime}\right) \subset U_{m}$.

Let $x \in J^{\prime}$; we have $(x, \psi(x)) \in I_{m} \times U_{m}$ and $P_{x}(\psi(x))=0$. Since ϕ_{m} satisfies $(*)$ on $I_{m} \times U_{m}$, it follows that $\psi(x)=\phi_{m}(x)$. This proves that $\psi_{\mid J^{\prime}}=\phi_{m \mid J^{\prime}}$.

Define the function $\tilde{\psi}$ on $J \cup I^{\prime}$ by $\tilde{\psi}(x):=\left\{\begin{array}{cl}\psi(x) & \text { if } x \in J \\ \phi_{m}(x) & \text { if } x \in I^{\prime}\end{array}\right.$.
This definition makes sense because ψ and ϕ_{m} agree on $I^{\prime} . \tilde{\psi}$ is a strict extension of ψ. Since ψ and ϕ_{m} are $C^{1}, \tilde{\psi}$ is also C^{1}. Since ψ satisfies (\dagger) on J and ϕ_{m} satisfies $(*)$ on I^{\prime}, it follows that $\tilde{\psi}$ satisfies (\dagger) on $J \cup I^{\prime}$, which contradicts the maximality of (J, ψ). Thus, $b=\infty$ (note that we could prove the same way that $\inf J=a)$.

Lemma 2.5. Let K be a Hardy field and $P \in K[X]$ of degree n such that $\operatorname{gcd}\left(P, P^{\prime}\right)=1$. Then there exists some $a \in \mathbb{R}$ and $n C^{1}$ functions $\phi_{1}, \ldots \phi_{n}$: $(a, \infty) \rightarrow \mathbb{C}$ such that $Z\left(P_{x}\right)=\left\{\phi_{1}(x), \ldots, \phi_{n}(x)\right\}$ for each $x>a$.

Proof. By Lemma 2.1, there exists some $a_{0} \in \mathbb{R}$ such that $\operatorname{gcd}\left(P_{x}, P_{x}^{\prime}\right)=1$ for all $x>a_{0}$, which means that P_{x} has n distinct roots in \mathbb{C}. Let $a>a_{0}$, and let y_{1}, \ldots, y_{n} be the n distinct roots of P_{a}. By the previous lemma, we obtain $n C^{1}$ functions $\phi_{1}, \ldots, \phi_{n}:\left(a_{0}, \infty\right) \rightarrow \mathbb{C}$ such that $\phi_{m}(a)=y_{m}$ for any $m \in\{1, \ldots, n\}$, and $\left\{\phi_{1}(x) \ldots, \phi_{n}(x)\right\} \subseteq Z\left(P_{x}\right)$ for any $x>a$. To show equality, we just have to show that $\phi_{l}(x) \neq \phi_{m}(x)$ for any $x>a$ and any $m, l \in\{1, \ldots, n\}$.

Now let $m, l \in\{1 \ldots n\}$ and $E:=[a, \infty] \cap\left(\phi_{m}-\phi_{l}\right)^{-1}(\{0\})$. Assume $E \neq \varnothing$. By continuity of ϕ_{m} and ϕ_{l}, E is a closed subset of \mathbb{R} and has a lower bound a, so it has a minimum b. Since $\phi_{m}(a) \neq \phi_{l}(a), b>a$. Set $c:=\phi_{m}(b) . c$ is a root of P_{b}, so we can apply IFT' at the point (b, c) and we get an open neighborhood $I \times U$ of (b, c) and a map $\phi: I \rightarrow U$ satisfying $(*)$. Since U is a neighborhood of c, and since $c=\phi_{m}(b)=\phi_{l}(b), \phi_{l}^{-1}(U)$ and $\phi_{m}^{-1}(U)$ are neighborhoods of b, so

$$
J:=I \cap(a, \infty) \cap \phi_{l}^{-1}(U) \cap \phi_{m}^{-1}(U)
$$

is a neighborhood of b. Let $x \in J$ such that $x<b ;\left(x, \phi_{l}(x)\right)$ and $\left(x, \phi_{m}(x)\right)$ both belong to $I \times U$ and we have $P_{x}\left(\phi_{m}(x)\right)=P_{x}\left(\phi_{l}(x)\right)=0$; since ϕ satisfies $(*)$ on $I \times U$, this implies $\phi_{l}(x)=\phi(x)=\phi_{m}(x)$, so $x \in E$, which contradicts the minimality of b. Thus, $E=\varnothing$.

Proposition 2.6. Let k be a Hardy field,

$$
K:=\{\bar{f} \in \mathcal{G} \mid f \text { continuous and } \exists P \in k[X] \text { with } P \neq 0 \wedge P(\bar{f})=0\}
$$

and

$$
L:=\{\bar{f} \in \mathcal{F} \mid f \text { continuous and } \exists P \in k[X] \text { with } P \neq 0 \wedge P(\bar{f})=0\} .
$$

Then K is a Hardy field, L is a complex Hardy field, L is the algebraic closure of k and K is the real closure of k.
Proof. Obviously, $k \subseteq K \subseteq L$. Now let $\bar{f}, \bar{g} \in K$. By Proposition 2.3, $k[\bar{f}]$ is a Hardy field. Since g is continuous and \bar{g} is canceled by a polynomial in $k[\bar{f}][X]$, we can once again use Proposition 2.3 and we obtain that $k[\bar{f}, \bar{g}]$ is a Hardy field, and since it is algebraic over k, it is contained in K. Since $k[\bar{f}, \bar{g}]$ is a Hardy field, we have

$$
0,1, \bar{f}-\bar{g}, \frac{\bar{f}}{\bar{g}}, \delta(\bar{f}), \delta(\bar{g}) \in k[\bar{f}, \bar{g}],
$$

hence

$$
0,1, \bar{f}-\bar{g}, \frac{\bar{f}}{\bar{g}}, \delta(\bar{f}), \delta(\bar{g}) \in K .
$$

This proves that K is Hardy field. The same proof shows that L is a complex Hardy field.

Now let us show that L is algebraically closed. Let $P \in k[x]$ irreducible of degree $n>1$. Since $\operatorname{char}(k)=0, \operatorname{gcd}\left(P, P^{\prime}\right)=1$. By Lemma 2.5 there exists some $a \in \mathbb{R}$ and C^{1} functions $\phi_{1}, \ldots, \phi_{n}:(a, \infty) \rightarrow \mathbb{C}$, such that for any $x>a, Z\left(P_{x}\right)=\left\{\phi_{1}(x), \ldots, \phi_{n}(x)\right\}$. This means that $\bar{\phi}_{1}, \ldots, \bar{\phi}_{n}$ are n distinct roots of P. Since $\phi_{1}, \ldots, \phi_{n}$ are continuous functions from (a, ∞) to \mathbb{C} and $\bar{\phi}_{1}, \ldots, \bar{\phi}_{n}$ are canceled by $P \in k[X]$, we have $\bar{\phi}_{1}, \ldots \bar{\phi}_{n} \in L$.

Thus, any polynomial with coefficients in k splits in L. Since L / k is an algebraic extension, this proves that L is algebraically closed, and thus L is the algebraic closure of k. Finally note that $L=K(i)$. Since $K(i)$ is algebraically closed, K is real closed, and it is the real closure of k.

Corollary 2.7. The real closure of a Hardy field is again a Hardy field.

